Additive manufacturing of thin electrolyte layers via inkjet printing of highly-stable ceramic inks


Inkjet printing is a promising alternative for the fabrication of thin film components for solid oxide fuel cells (SOFCs) due to its contactless, mask free, and controllable printing process. In order to obtain satisfying electrolyte thin layer structures in anode-supported SOFCs, the preparation of suitable electrolyte ceramic inks is a key. At present, such a kind of 8 mol% Y2O3-stabilized ZrO2 (8YSZ) electrolyte ceramic ink with long-term stability and high solid loading (> 15 wt%) seems rare for precise inkjet printing, and a number of characterization and performance aspects of the inks, such as homogeneity, viscosity, and printability, should be studied. In this study, 8YSZ ceramic inks of varied compositions were developed for inkjet printing of SOFC ceramic electrolyte layers. The dispersing effect of two types of dispersants, i.e., polyacrylic acid ammonium (PAANH4) and polyacrylic acid (PAA), were compared. The results show that ultrasonic dispersion treatment can help effectively disperse the ceramic particles in the inks. PAANH4 has a better dispersion effect for the inks developed in this study. The inks show excellent printable performance in the actual printing process. The stability of the ink can be maintained for a storage period of over 30 days with the help of initial ultrasonic dispersion. Finally, micron-size thin 8YSZ electrolyte films were successfully fabricated through inkjet printing and sintering, based on the as-developed high solid loading 8YSZ inks (20 wt%). The films show fully dense and intact structural morphology and smooth interfacial bonding, offering an improved structural quality of electrolyte for enhanced SOFC performance.


  1. [1]

    Singh M, Haverinen HM, Dhagat P, et al. Inkjet printing-process and its applications. Adv Mater 2010, 22: 673–685.

    CAS  Article  Google Scholar 

  2. [2]

    Chen ZW, Li ZY, Li JJ, et al. 3D printing of ceramics: A review. J Eur Ceram Soc 2019, 39: 661–687.

    CAS  Article  Google Scholar 

  3. [3]

    Wang JW, Shaw LL. Fabrication of functionally graded materials via inkjet color printing. J Am Ceram Soc 2006, 89: 3285–3289.

    CAS  Article  Google Scholar 

  4. [4]

    Hasegawa H. Inkjet printing and nanoscale electrocrystallization: Complete fabrication of organic microcrystals-based devices under ambient conditions. Appl Mater Today 2017, 9: 487–492.

    Article  Google Scholar 

  5. [5]

    Li XY, Zhao YH, Yu J, et al. Layer by layer inkjet printing reduced graphene oxide film supported nickel cobalt layered double hydroxide as a binder-free electrode for supercapacitors. Appl Surf Sci 2020, 509: 144872.

  6. [6]

    Sun JZ, Guo YZ, Cui B, et al. Inkjet printing bendable circuits based on an oil-water interface reaction. Appl Surf Sci 2018, 445: 391–397.

    CAS  Article  Google Scholar 

  7. [7]

    Calvert P. Inkjet printing for materials and devices. Chem Mater 2001, 13: 3299–3305.

    CAS  Article  Google Scholar 

  8. [8]

    Lejeune M, Chartier T, Dossou-Yovo C, et al. Ink-jet printing of ceramic micro-pillar arrays. J Eur Ceram Soc 2009, 29: 905–911.

    CAS  Article  Google Scholar 

  9. [9]

    Sharaf OZ, Orhan MF. An overview of fuel cell technology: Fundamentals and applications. Renew Sustain Energy Rev 2014, 32: 810–853.

    CAS  Article  Google Scholar 

  10. [10]

    Huang ZZ, Luo LH, Liu LG, et al. Effect of Al2O3 addition on the non-isothermal crystallization kinetics and long-term stability of BCABS sealing glass for IT-SOFCs. J Adv Ceram 2018, 7: 380–387.

    CAS  Article  Google Scholar 

  11. [11]

    de Souza S, Visco SJ, de Jonghe LC. Reduced-temperature solid oxide fuel cell based on YSZ thin-film electrolyte. J Electrochem Soc 1997, 144: L35–L37.

  12. [12]

    Ivers-Tiffée E, Weber A, Herbstritt D. Materials and technologies for SOFC-components. J Eur Ceram Soc 2001, 21: 1805–1811.

    Article  Google Scholar 

  13. [13]

    Wang CH, Worrell WL, Park S, et al. Fabrication and performance of thin-film YSZ solid oxide fuel cells. J Electrochem Soc 2001, 148: A864.

  14. [14]

    Leng Y. Performance evaluation of anode-supported solid oxide fuel cells with thin film YSZ electrolyte. Int J Hydrog Energy 2004, 29: 1025–1033.

    CAS  Article  Google Scholar 

  15. [15]

    Calvert P. Inkjet printing for materials and devices. Chem Mater 2001, 13: 3299–3305.

    CAS  Article  Google Scholar 

  16. [16]

    Sukeshini MA, Cummins R, Reitz TL, et al. Ink-jet printing: A versatile method for multilayer solid oxide fuel cells fabrication. J Am Ceram Soc 2009, 92: 2913–2919.

    CAS  Article  Google Scholar 

  17. [17]

    Faino N, Rosensteel W, Gorman B, et al. Progress toward inkjet deposition of segmented-in-series solid-oxide fuel cell architectures. ECS Trans 2019, 35: 593–600.

    Article  Google Scholar 

  18. [18]

    Chen ZW, Ouyang J, Liang WL, et al. Development and characterizations of novel aqueous-based LSCF suspensions for inkjet printing. Ceram Int 2018, 44: 13381–13388.

    CAS  Article  Google Scholar 

  19. [19]

    Han GD, Choi HJ, Bae K, et al. Fabrication of lanthanum strontium cobalt ferrite-gadolinium-doped ceria composite cathodes using a low-price inkjet printer. ACS Appl Mater Interfaces 2017, 9: 39347–39356.

    CAS  Article  Google Scholar 

  20. [20]

    Kim M, Kim DH, Han GD, et al. Lanthanum strontium cobaltite-infiltrated lanthanum strontium cobalt ferrite cathodes fabricated by inkjet printing for high-performance solid oxide fuel cells. J Alloys Compd 2020, 843: 155806.

    CAS  Article  Google Scholar 

  21. [21]

    Yashiro N, Usui T, Kikuta K. Application of a thin intermediate cathode layer prepared by inkjet printing for SOFCs. J Eur Ceram Soc 2010, 30: 2093–2098.

    CAS  Article  Google Scholar 

  22. [22]

    Li C, Shi HG, Ran R, et al. Thermal inkjet printing of thin-film electrolytes and buffering layers for solid oxide fuel cells with improved performance. Int J Hydrog Energy 2013, 38: 9310–9319.

    CAS  Article  Google Scholar 

  23. [23]

    Pimenov A. Ionic conductivity and relaxations in ZrO2-Y2O3 solid solutions. Solid State Ionics 1998, 109: 111–118.

    CAS  Article  Google Scholar 

  24. [24]

    Panthi D, Hedayat N, Du YH. Densification behavior of yttria-stabilized zirconia powders for solid oxide fuel cell electrolytes. J Adv Ceram 2018, 7: 325–335.

    CAS  Article  Google Scholar 

  25. [25]

    Tomov RI, Krauz M, Jewulski J, et al. Direct ceramic inkjet printing of yttria-stabilized zirconia electrolyte layers for anode-supported solid oxide fuel cells. J Power Sources 2010, 195: 7160–7167.

    CAS  Article  Google Scholar 

  26. [26]

    Young D, Sukeshini AM, Cummins R, et al. Ink-jet printing of electrolyte and anode functional layer for solid oxide fuel cells. J Power Sources 2008, 184: 191–196.

    CAS  Article  Google Scholar 

  27. [27]

    Tseng WJ, Chen CN. Dispersion and rheology of nickel nanoparticle inks. J Mater Sci 2006, 41: 1213–1219.

    CAS  Article  Google Scholar 

  28. [28]

    Teng WD, Edirisinghe MJ, Evans JRG. Optimization of dispersion and viscosity of a ceramic jet printing ink. J Am Ceram Soc 2005, 80: 486–494.

    Article  Google Scholar 

  29. [29]

    Bienia M, Lejeune M, Chambon M, et al. Inkjet printing of ceramic colloidal suspensions: Filament growth and breakup. Chem Eng Sci 2016, 149: 1–13.

    CAS  Article  Google Scholar 

  30. [30]

    Sato K, Li JG, Kamiya H, et al. Ultrasonic dispersion of TiO2 nanoparticles in aqueous suspension. J Am Ceram Soc 2008, 91: 2481–2487.

    CAS  Article  Google Scholar 

  31. [31]

    Kusters KA, Pratsinis SE, Thoma SG, et al. Energy—Size reduction laws for ultrasonic fragmentation. Powder Technol 1994, 80: 253–263.

    Article  Google Scholar 

  32. [32]

    Doktycz S, Suslick K. Interparticle collisions driven by ultrasound. Science 1990, 247: 1067–1069.

    CAS  Article  Google Scholar 

  33. [33]

    Suzuki TS, Sakka Y, Nakano K, et al. Effect of ultrasonication on the microstructure and tensile elongation of zirconia-dispersed alumina ceramics prepared by colloidal processing. J Am Ceram Soc 2004, 84: 2132–2134.

    Article  Google Scholar 

  34. [34]

    Li CC, Li MJ, Huang YP. Dispersion of aluminum-doped zinc oxide nanopowder in non-aqueous suspensions. J Am Ceram Soc 2017, 100: 5020–5029.

    CAS  Article  Google Scholar 

  35. [35]

    Pan ZD, Wang YM, Huang HN, et al. Recent development on preparation of ceramic inks in ink-jet printing. Ceram Int 2015, 41: 12515–12528.

    CAS  Article  Google Scholar 

  36. [36]

    Wang X, Carr WW, Bucknall DG, et al. High-shear-rate capillary viscometer for inkjet inks. Rev Sci Instruments 2010, 81: 065106.

    Article  CAS  Google Scholar 

  37. [37]

    Driessen T, Jeurissen R. Drop formation in inkjet printing. In Fundamentals of Inkjet Printing: The Science of Inkjet and Droplets. Hoath SD, Ed. Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015: 93–116.

    Google Scholar 

  38. [38]

    Hunter RJ. Applications of the zeta potential. In Zeta Potential in Colloid Science. Hunter RJ, Ed. Amsterdam: Elsevier, 1981: 219–257.

    Google Scholar 

  39. [39]

    Verwey EJW, Overbeek JTG. Theory of the stability of lyophobic colloids. J Colloid Sci 1955, 10: 224–225.

    CAS  Article  Google Scholar 

  40. [40]

    Kumar A, Dixit CK. Methods for characterization of nanoparticles. In Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids. Nimesh S, Chandra R, Gupta N, Eds. Amsterdam: Elsevier, 2017: 43–58.

    Google Scholar 

  41. [41]

    Fromm JE. Numerical calculation of the fluid dynamics of drop-on-demand jets. IBM J Res & Dev 1984, 28: 322–333.

    Article  Google Scholar 

  42. [42]

    Reis N, Derby B. Ink jet deposition of ceramic suspensions: Modeling and experiments of droplet formation. MRS Proc 2000, 625: 117–122.

    CAS  Article  Google Scholar 

  43. [43]

    Izdebska JE, Thomas S. Printing on Polymers: Fundamentals and Applications. Amsterdam: Elsevier, 2015.

    Google Scholar 

  44. [44]

    Song JH, Nur HM. Defects and prevention in ceramic components fabricated by inkjet printing. J Mater Process Technol 2004, 155–156: 1286–1292.

    Article  Google Scholar 

  45. [45]

    Derby B, Reis N. Inkjet printing of highly loaded particulate suspensions. MRS Bull 2003, 28: 815–818.

    CAS  Article  Google Scholar 

  46. [46]

    Bergström L. Rheological properties of concentrated, nonaqueous silicon nitride suspensions. J Am Ceram Soc 1996, 79: 3033–3040.

    Article  Google Scholar 

  47. [47]

    Noshchenko O, Kuscer D, Mocioiu OC, et al. Effect of milling time and pH on the dispersibility of lead zirconate titanate in aqueous media for inkjet printing. J Eur Ceram Soc 2014, 34: 297–305.

    CAS  Article  Google Scholar 

  48. [48]

    Peymannia M, Soleimani-Gorgani A, Ghahari M, et al. The effect of different dispersants on the physical properties of nano CoAl2O4 ceramic ink-jet ink. Ceram Int 2015, 41: 9115–9121.

    CAS  Article  Google Scholar 

  49. [49]

    Prasad PSRK, Reddy AV, Rajesh PK, et al. Studies on rheology of ceramic inks and spread of ink droplets for direct ceramic ink jet printing. J Mater Process Technol 2006, 176: 222–229.

    CAS  Article  Google Scholar 

  50. [50]

    Salaoru I, Zhou ZX, Morris P, et al. Inkjet printing of polyvinyl alcohol multilayers for additive manufacturing applications. J Appl Polym Sci 2016, 133: 43572.

    Article  CAS  Google Scholar 

  51. [51]

    Hwang KJ, Shin M, Lee MH, et al. Investigation on the phase stability of yttria-stabilized zirconia electrolytes for high-temperature electrochemical application. Ceram Int 2019, 45: 9462–9467.

    CAS  Article  Google Scholar 

Download references


This work is supported by the National Natural Science Foundation of China (51975384), Guangdong Basic and Applied Basic Research Foundation (2020A1515011547), Natural Science Foundation of Shenzhen (JCYJ20190808144009478), and Key-Area Research and Development Program of Guangdong Province (2020B090924003).

Author information



Corresponding author

Correspondence to Zhangwei Chen.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Gong, Z., Qu, P. et al. Additive manufacturing of thin electrolyte layers via inkjet printing of highly-stable ceramic inks. J Adv Ceram (2021).

Download citation


  • inkjet printing
  • water-based ceramic ink
  • solid oxide fuel cell (SOFC) electrolyte
  • 8YSZ
  • ink stability
  • rheological properties