IR-transparent MgO-Gd2O3 composite ceramics produced by self-propagating high-temperature synthesis and spark plasma sintering

Abstract

A glycine-nitrate self-propagating high-temperature synthesis (SHS) was developed to produce composite MgO-Gd2O3 nanopowders. The X-ray powder diffraction (XRD) analysis confirmed the SHS-product consists of cubic MgO and Gd2O3 phases with nanometer crystallite size and retains this structure after annealing at temperatures up to 1200 °C. Near full dense high IR-transparent composite ceramics were fabricated by spark plasma sintering (SPS) at 1140 °C and 60 MPa. The in-line transmittance of 1 mm thick MgO-Gd2O3 ceramics exceeded 70% in the range of 4–5 mm and reached a maximum of 77% at a wavelength of 5.3 mm. The measured microhardness HV0.5 of the MgO-Gd2O3 ceramics is 9.5±0.4 GPa, while the fracture toughness (KIC) amounted to 2.0±0.5 MPa·m1/2. These characteristics demonstrate that obtained composite MgO-Gd2O3 ceramic is a promising material for protective infra-red (IR) windows.

References

  1. [1]

    Xie JX, Mao XJ, Zhu QQ, et al. Influence of synthesis conditions on the properties of Y2O3-MgO nanopowders and sintered nanocomposites. J Eur Ceram Soc 2017, 37: 4095–4101.

    CAS  Article  Google Scholar 

  2. [2]

    Harris DC, Cambrea LR, Johnson LF, et al. Properties of an infrared-transparent MgO:Y2O3 nanocomposite. J Am Ceram Soc 2013, 96: 3828–3835.

    CAS  Article  Google Scholar 

  3. [3]

    Jiang DT, Mukherjee AK. Spark plasma sintering of an infrared-transparent Y2O3-MgO nanocomposite. J Am Ceram Soc 2010, 93: 769–773.

    CAS  Article  Google Scholar 

  4. [4]

    Ma HJ, Jung WK, Baek C, et al. Influence of microstructure control on optical and mechanical properties of infrared transparent Y2O3-MgO nanocomposite. J Eur Ceram Soc 2017, 37: 4902–4911.

    CAS  Article  Google Scholar 

  5. [5]

    Stefanik T, Gentilman R, Hogan P. Nano-composite optical ceramics for infrared windows and domes. Proc SPIE 2007, 6545: 65450A.

    Article  Google Scholar 

  6. [6]

    Yong SM, Choi DH, Lee K, et al. Study on carbon contamination and carboxylate group formation in Y2O3-MgO nanocomposites fabricated by spark plasma sintering. J Eur Ceram Soc 2020, 40: 847–851.

    CAS  Article  Google Scholar 

  7. [7]

    Wang JW, Zhang LC, Chen DY, et al. Y2O3-MgO-ZrO2 infrared transparent ceramic nanocomposites. J Am Ceram Soc 2012, 95: 1033–1037.

    CAS  Google Scholar 

  8. [8]

    Information on http://www.dtic.mil/dtic/tr/fulltext/u2/a460289.pdf.

  9. [9]

    Wu N, Li XD, Li JG, et al. Fabrication of Gd2O3-MgO nanocomposite optical ceramics with varied crystallographic modifications of Gd2O3 constituent. J Am Ceram Soc 2018, 101: 4887–4891.

    CAS  Article  Google Scholar 

  10. [10]

    Safronova NA, Kryzhanovska OS, Dobrotvorska MV, et al. Influence of sintering temperature on structural and optical properties of Y2O3-MgO composite SPS ceramics. Ceram Int 2020, 46: 6537–6543.

    CAS  Article  Google Scholar 

  11. [11]

    Permin DA, Boldin MS, Belyaev AV, et al. IR-transparent MgO-Y2O3 ceramics by self-propagating high-temperature synthesis and spark plasma sintering. Ceram Int 2020, 46: 15786–15792.

    CAS  Article  Google Scholar 

  12. [12]

    Kryzhanovska OS, Safronova NA, Balabanov AE, et al. Y2O3-MgO highly-sinterable nanopowders for transparent composite ceramics. Funct Mater 2019, 26: 829–837.

    CAS  Google Scholar 

  13. [13]

    Xie JX, Mao XJ, Li XK, et al. Influence of moisture absorption on the synthesis and properties of Y2O3-MgO nanocomposites. Ceram Int 2017, 43: 40–44.

    Article  Google Scholar 

  14. [14]

    Yong SM, Choi DH, Lee K, et al. Influence of the calcination temperature on the optical and mechanical properties of Y2O3-MgO nanocomposite. Arch Metall Mater 2018, 63: 1481–1484.

    CAS  Google Scholar 

  15. [15]

    Liu LH, Morita K, Suzuki TS, et al. Evolution of microstructure, mechanical, and optical properties of Y2O3-MgO nanocomposites fabricated by high pressure spark plasma sintering. J Eur Ceram Soc 2020, 40: 4547–4555.

    CAS  Article  Google Scholar 

  16. [16]

    Liu LH, Morita K, Suzuki TS, et al. Synthesis of highly-infrared transparent Y2O3-MgO nanocomposites by colloidal technique and SPS. Ceram Int 2020, 46: 13669–13676.

    CAS  Article  Google Scholar 

  17. [17]

    Özdemir H, Faruk Öksüzömer MA. Synthesis of Al2O3, MgO and MgAl2O4 by solution combustion method and investigation of performances in partial oxidation of methane. Powder Technol 2020, 359: 107–117.

    Article  Google Scholar 

  18. [18]

    Orante-Barrón VR, Oliveira LC, Kelly JB, et al. Luminescence properties of MgO produced by solution combustion synthesis and doped with lanthanides and Li. J Lumin 2011, 131: 1058–1065.

    Article  Google Scholar 

  19. [19]

    Permin DA, Balabanov SS, Snetkov IL, et al. Hot pressing of Yb: Sc2O3 laser ceramics with LiF sintering aid. Opt Mater 2020, 100: 109701.

  20. [20]

    Balabanov SS, Permin DA, Rostokina EY, et al. Sinterability of nanopowders of terbia solid solutions with scandia, yttria, and lutetia. J Adv Ceram 2018, 7: 362–369.

    CAS  Article  Google Scholar 

  21. [21]

    Permin DA, Kurashkin SV, Novikova AV, et al. Synthesis and luminescence properties of Yb-doped Y2O3, Sc2O3 and Lu2O3 solid solutions nanopowders. Opt Mater 2018, 77: 240–245.

    CAS  Article  Google Scholar 

  22. [22]

    Coelho AA. Whole-profile structure solution from powder diffraction data using simulated annealing. J Appl Cryst 2000, 33: 899–908.

    CAS  Article  Google Scholar 

  23. [23]

    Chuvil’deev VN, Boldin MS, Dyatlova YG, et al. Comparative study of hot pressing and high-speed electropulse plasma sintering of Al2O3/ZrO2/Ti(C,N) powders. Russ J Inorg Chem 2015, 60: 987–993.

    Article  Google Scholar 

  24. [24]

    Lawn B. Fracture of Brittle Solids. 2nd edn. Cambridge: Cambridge University press, 1993.

    Google Scholar 

  25. [25]

    Warlimont H. Ceramics. In Springer Handbook of Condensed Matter and Materials Data. Martienssen W, Warlimont H, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005: 431–476.

  26. [26]

    Information on https://materials.springer.com/isp/crystallographic/docs/sd_0547532

  27. [27]

    Information on https://materials.springer.com/isp/crystallographic/docs/sd_0561181.

  28. [28]

    Zinkevich M. Thermodynamics of rare earth sesquioxides. Prog Mater Sci 2007, 52: 597–647.

    CAS  Article  Google Scholar 

  29. [29]

    Rhodes WH. Controlled transient solid second-phase sintering of yttria. J Am Ceram Soc 1981, 64: 13–19.

    CAS  Article  Google Scholar 

  30. [30]

    Zhang FX, Lang M, Wang JW, et al. Structural phase transitions of cubic Gd2O3 at high pressures. Phys Rev B 2008, 78: 064114.

  31. [31]

    Aksel C, Riley FL. Magnesia-spinel (MgAl2O4) refractory ceramic composites. In Ceramic-Matrix Composites. Microstructure, Properties and Applications. Cambridge: Woodhead Publishing Limited, 2006: 359–399.

    Google Scholar 

  32. [32]

    Ma HJ, Kong JH, Kim DK. Insight into the scavenger effect of LiF on extinction of a carboxylate group for mid-infrared transparent Y2O3-MgO nanocomposite. Scripta Mater 2020, 187: 37–42.

    CAS  Article  Google Scholar 

  33. [33]

    Wang CJ, Huang CY, Wu YC. Two-step sintering of fine alumina-zirconia ceramics. Ceram Int 2009, 35: 1467–1472.

    CAS  Article  Google Scholar 

  34. [34]

    Madhav Reddy K, Kumar N, Basu B. Innovative multistage spark plasma sintering to obtain strong and tough ultrafine-grained ceramics. Scripta Mater 2010, 62: 435–438.

    CAS  Article  Google Scholar 

  35. [35]

    Kim BN, Hiraga K, Grasso S, et al. High-pressure spark plasma sintering of MgO-doped transparent alumina. J Ceram Soc Japan 2012, 120: 116–118.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The study was funded by the Russian Science Foundation (Research Project No. 19-73-10127). The IR spectral studies were performed on the equipment of the Analytical Centre of the G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dmitry A. Permin.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Permin, D.A., Boldin, M.S., Belyaev, A.V. et al. IR-transparent MgO-Gd2O3 composite ceramics produced by self-propagating high-temperature synthesis and spark plasma sintering. J Adv Ceram (2021). https://doi.org/10.1007/s40145-020-0434-1

Download citation

Keywords

  • MgO-Gd2O3
  • self-propagating high-temperature synthesis (SHS)
  • spark plasma sintering (SPS)
  • optical properties
  • infra-red (IR) ceramics