Synthesis, microstructure, and properties of high purity Mo2TiAlC2 ceramics fabricated by spark plasma sintering

Abstract

The synthesis, microstructure, and properties of high purity dense bulk Mo2TiAlC2 ceramics were studied. High purity Mo2TiAlC2 powder was synthesized at 1873 K starting from Mo, Ti, Al, and graphite powders with a molar ratio of 2:1:1.25:2. The synthesis mechanism of Mo2TiAlC2 was explored by analyzing the compositions of samples sintered at different temperatures. It was found that the Mo2TiAlC2 phase was formed from the reaction among Mo3Al2C, Mo2C, TiC, and C. Dense Mo2TiAlC2 bulk sample was prepared by spark plasma sintering (SPS) at 1673 K under a pressure of 40 MPa. The relative density of the dense sample was 98.3%. The mean grain size was 3.5 μm in length and 1.5 μm in width. The typical layered structure could be clearly observed. The electrical conductivity of Mo2TiAlC2 ceramic measured at the temperature range of 2–300 K decreased from 0.95 × 106 to 0.77 × 106 Ω–1·m–1. Thermal conductivity measured at the temperature range of 300–1273 K decreased from 8.0 to 6.4 W·(m·K)–1. The thermal expansion coefficient (TEC) of Mo2TiAlC2 measured at the temperature of 350–1100 K was calculated as 9.0 × 10–6 K–1. Additionally, the layered structure and fine grain size benefited for excellent mechanical properties of low intrinsic Vickers hardness of 5.2 GPa, high flexural strength of 407.9 MPa, high fracture toughness of 6.5 MPa·m1/2, and high compressive strength of 1079 MPa. Even at the indentation load of 300 N, the residual flexural strength could hold 84% of the value of undamaged one, indicating remarkable damage tolerance. Furthermore, it was confirmed that Mo2TiAlC2 ceramic had a good oxidation resistance below 1200 K in the air.

References

  1. [1]

    Li X, Liang BY, Li ZX. Combustion synthesis of Ti2SC. Int J Mater Res 2013, 104:1038–1040.

    CAS  Article  Google Scholar 

  2. [2]

    Tunca BS, Lapauw T, Karakulina OM, et al. Synthesis of MAX phases in the Zr-Ti-Al-C system. Inorg Chem 2017, 56:3489–3498.

    CAS  Article  Google Scholar 

  3. [3]

    Mockute A, Dahlqvist M, Emmerlich J, et al. Synthesis and ab initio calculations of nanolaminated (Cr,Mn)2AlC compounds. Phys Rev B 2013, 87:094113.

    Article  CAS  Google Scholar 

  4. [4]

    Lapauw T, Lambrinou K, Cabioc'H T, et al. Synthesis of the new MAX phase Zr2AlC. J Eur Ceram Soc 2016, 36:1847–1853.

    CAS  Article  Google Scholar 

  5. [5]

    Lapauw T, Halim J, Lu J, et al. Synthesis of the novel Zr3AlC2 MAX phase. J Eur Ceram Soc 2016, 36:943–947.

    CAS  Article  Google Scholar 

  6. [6]

    Gauthier-Brunet V, Cabioc'H T, Chartier P, et al. Reaction synthesis of layered ternary Ti2AlC ceramic. J Eur Ceram Soc 2009, 29:187–194.

    CAS  Article  Google Scholar 

  7. [7]

    Dubois S, Bei GP, Tromas C, et al. Synthesis, microstructure, and mechanical properties of Ti3Sn(1-x)AlxC2 MAX phase solid solutions. Int J Appl Ceram 2010, 7:719–729.

    CAS  Article  Google Scholar 

  8. [8]

    Opeka M, Zaykoski J, Talmy I, et al. Synthesis and characterization of Zr2SC ceramics. Mat Sci E A-Struct 2011, 528:1994–2001.

    Article  CAS  Google Scholar 

  9. [9]

    Faraoun HI, Abderrahim FZ, Esling C. First principle calculations of MAX ceramics Cr2GeC, V2GeC and their substitutional solid solutions. Comput Mater Sci 2013, 74:40–49.

    CAS  Article  Google Scholar 

  10. [10]

    Wang Q, Hu CF, Cai S, et al. Synthesis of high purity Ti3SiC2 by microwave sintering. Int J Appl Ceram Tec 2014, 11:911–918.

    CAS  Article  Google Scholar 

  11. [11]

    Saeed MA, Deorsola FA, Rashad RM. Optimization of the Ti3SiC2 MAX phase synthesis. Int J Refract Met H 2012, 35:127–131.

    Article  CAS  Google Scholar 

  12. [12]

    Li SB, Zhai HX. Synthesis and reaction mechanism of Ti3SiC2 by mechanical alloying of elemental Ti, Si, and C powders. J Am Ceram Soc 2005, 88:2092–2098.

    CAS  Article  Google Scholar 

  13. [13]

    Yan M, Chen YL, Mei BC, et al. Synthesis of high-purity Ti2AlN ceramic by hot pressing. T Nonferr Metal Soc 2008, 18:82–85.

    CAS  Article  Google Scholar 

  14. [14]

    Liu Y, Zhang LL, Xiao WW, et al. Rapid synthesis of Ti2AlN ceramic via thermal explosion. Mater Lett 2015, 149:5–7.

    CAS  Article  Google Scholar 

  15. [15]

    Zhu JF, Gao JQ, Yang JF, et al. Synthesis and microstructure of layered-ternary Ti2AlC ceramic by high energy milling and hot pressing. Mater Sci Eng: A 2008, 490:62–65.

    Article  CAS  Google Scholar 

  16. [16]

    Hu CF, Zhou YC, Bao YW. Material removal and surface damage in EDM of Ti3SiC2 ceramic. Ceram Int 2008, 34:537–541.

    CAS  Article  Google Scholar 

  17. [17]

    Rawn C, Barsoum M, El-Raghy T, et al. Structure of Ti4AlN3-A layered Mn+1AXn nitride. Mater Res Bull 2000, 35:1785–1796.

    CAS  Article  Google Scholar 

  18. [18]

    Zhou YC, Sun ZM. Microstructure and mechanism of damage tolerance for Ti3SiC2 bulk ceramics. Mater Res Innov 1999, 2: 360–363.

    CAS  Article  Google Scholar 

  19. [19]

    Barsoum MW, Yoo HI, Polushina IK, et al. Electrical conductivity, thermopower, and Hall effect of Ti3AlC2, Ti4AlN3, and Ti3SiC2. Phys Rev B 2000, 62:10194.

    Article  Google Scholar 

  20. [20]

    El-Raghy T, Zavaliangos A, Barsoum MW, et al. Damage mechanisms around hardness indentations in Ti3SiC2. J Am Ceram Soc 2005, 80:513–516.

    Article  Google Scholar 

  21. [21]

    Lai CC, Petruhins A, Lu J, et al. Thermally induced substitutional reaction of Fe into Mo2GaC thin films. Mater Res Lett 2017, 5:533–539.

    CAS  Article  Google Scholar 

  22. [22]

    Amini S, Zhou AG, Gupta S, et al. Synthesis and elastic and mechanical properties of Cr2GeC. J Mater Res 2008, 23:2157–2165.

    CAS  Article  Google Scholar 

  23. [23]

    Lin ZJ, Zhou YC, Li MS. Synthesis, microstructure, and property of Cr2AlC. J Mater Sci Tech 2007, 13:721–746.

    Google Scholar 

  24. [24]

    Li XC, Zheng LL, Qian YH, et al. Breakaway oxidation of Ti3AlC2 during long-term exposure in air at 1100?. Corros Sci 2016, 104:112–122.

    CAS  Article  Google Scholar 

  25. [25]

    Wang XH, Zhou YC. Oxidation behavior of Ti3AlC2 at 1000-1400? in air. Corros Sci 2003, 45:891–907.

    CAS  Article  Google Scholar 

  26. [26]

    Qian XK, He XD, Li YB, et al. Cyclic oxidation of Ti3AlC2 at 1000-1300? in air. Corros Sci 2011, 53:290–295.

    CAS  Article  Google Scholar 

  27. [27]

    Tallman DJ, Anasori B, Barsoum MW. A critical review of the oxidation of Ti2AlC, Ti3AlC2 and Cr2AlC in air. Mater Res Lett 2013, 1:115–125.

    CAS  Article  Google Scholar 

  28. [28]

    Wang XH, Zhou YC. Layered machinable and electrically conductive Ti2AlC and Ti3AlC2 ceramics: A review. J Mater Sci Technol 2010, 26:385–416.

    Article  Google Scholar 

  29. [29]

    Amini S, Barsoum MW, El-Raghy T. Synthesis and mechanical properties of fully dense Ti2SC. J Am Ceram Soc 2007, 90:3953–3958.

    CAS  Google Scholar 

  30. [30]

    Hu CF, He LF, Zhang J, et al. Microstructure and properties of bulk Ta2AlC ceramic synthesized by an in situ reaction/hot pressing method. J Eur Ceram Soc 2008, 28:1679–1685.

    CAS  Article  Google Scholar 

  31. [31]

    Hu CF, He LF, Liu MY, et al. In situ reaction synthesis and mechanical properties of V2AlC. J Am Ceram Soc 2008, 91:4029–4035.

    CAS  Article  Google Scholar 

  32. [32]

    Sun ZM, Music D, Ahuja R, et al. Electronic origin of shearing in M2AC (M = Ti, V, Cr, A = Al, Ga). J Phys: Condens Matter 2005, 17:7169–7176.

    CAS  Google Scholar 

  33. [33]

    Music D, Schneider JM. The correlation between the electronic structure and elastic properties of nanolaminates. JOM 2007, 59:60–64.

    CAS  Article  Google Scholar 

  34. [34]

    Lin ZJ, Zhou YC, Li MS, et al. In-situ hot pressing/solid-liquid reaction synthesis of bulk Cr2AlC. Zeitschrift Für Met 2005, 96:291–296.

    CAS  Article  Google Scholar 

  35. [35]

    Wang J, Zhou Y. Dependence of elastic stiffness on electronic band structure of nanolaminate M2A1C (M = Ti, V, Nb, and Cr) ceramics. Phys Rev B 2004, 69:214111.

    Article  CAS  Google Scholar 

  36. [36]

    Zhou YC, Meng FL, Zhang J. New MAX-phase compounds in the V-Cr-Al-C system. J Am Ceram Soc 2008, 91:1357–1360.

    CAS  Article  Google Scholar 

  37. [37]

    Zheng LY, Wang JM, Lu XP, et al. (Ti0.5Nb0.5)5AlC4: A new-layered compound belonging to MAX phases. J Am Ceram Soc 2010, 93:3068–3071.

    CAS  Article  Google Scholar 

  38. [38]

    Anasori B, Dahlqvist M, Halim J, et al. Experimental and theoretical characterization of ordered MAX phases Mo2TiAlC2 and Mo2Ti2AlC3. J Appl Phys 2015, 118:094304.

    Article  CAS  Google Scholar 

  39. [39]

    Anasori B, Halim J, Lu J, et al. Mo2TiAlC2: A new ordered layered ternary carbide. Scripta Mater 2015, 101:5–7.

    CAS  Article  Google Scholar 

  40. [40]

    Fu S, Liu YL, Zhang HW, et al. Synthesis and characterization of high purity Mo2Ti2AlC3 ceramic. J Alloys Compd 2020, 815:152485.

    Article  CAS  Google Scholar 

  41. [41]

    Omori M. Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS). Mater Sci Eng: A 2000, 287:183–188.

    Article  Google Scholar 

  42. [42]

    Mamedov V. Spark plasma sintering as advanced PM sintering method. Powder Metall 2002, 45:322–328.

    CAS  Article  Google Scholar 

  43. [43]

    Wang YC, Fu ZY. Study of temperature field in spark plasma sintering. Mater Sci Eng: B 2002, 90:34–37.

    Article  Google Scholar 

  44. [44]

    Tokita M. Trends in advanced SPS Spark Plasma Sintering systems and FGM technology. J S Power Tech 1993, 30: 790–804.

    CAS  Google Scholar 

  45. [45]

    Parrikar PN, Gao HL, Radovic M, et al. Static and dynamic thermo-mechanical behavior of Ti2AlC MAX phase and fiber reinforced Ti2AlC composites. In Dynamic Behavior of Materials. Song B, Casem D, Kimberley J, Eds. Cham: Springer International Publishing, 2015, 1: 9–14.

    Google Scholar 

  46. [46]

    Choi ES, Sung J, Wang QM, et al. Material properties and machining performance of hybrid Ti2AlN bulk material for micro electrical discharge machining. Trans Nonferrous Met Soc China 2012, 22:781–786.

    Article  CAS  Google Scholar 

  47. [47]

    Griseri M, Tunca BS, Lapauw T, et al. Synthesis, properties and thermal decomposition of the Ta4AlC3 MAX phase. J Eur Ceram Soc 2019, 39:2973–2981.

    CAS  Article  Google Scholar 

  48. [48]

    Lapauw T, Vanmeensel K, Lambrinou K, et al. Rapid synthesis and elastic properties of fine-grained Ti2SnC produced by spark plasma sintering. J Alloys Compd 2015, 631:72–76.

    CAS  Article  Google Scholar 

  49. [49]

    Duan XM, Shen L, Jia DC, et al. Synthesis of high-purity, isotropic or textured Cr2AlC bulk ceramics by spark plasma sintering of pressure-less sintered powders. J Eur Ceram Soc 2015, 35:1393–1400.

    CAS  Article  Google Scholar 

  50. [50]

    Liu Y, Li YX, Li F, et al. Highly textured Ti2AlN ceramic prepared via thermal explosion followed by edge-free spark plasma sintering. Scripta Mater 2017, 136:55–58.

    CAS  Article  Google Scholar 

  51. [51]

    Wang X, Zhou Y. Microstructure and properties of Ti3AlC2 prepared by the solid-liquid reaction synthesis and simultaneous in-situ hot pressing process. Acta Mater 2002, 50:3143–3151.

    Article  Google Scholar 

  52. [52]

    Barsoum MW, Rawn CJ, El-Raghy T, et al. Thermal properties of Ti4AlN3. J Appl Phys 2000, 87:8407–8414.

    CAS  Article  Google Scholar 

  53. [53]

    Li YF, Xiao B, Sun L, et al. Phonon spectrum, IR and Raman modes, thermal expansion tensor and thermal physical properties of M2TiAlC2 (M = Cr, Mo, W). Comput Mater Sci 2017, 134:67–83.

    CAS  Article  Google Scholar 

  54. [54]

    Hu CF, Lin ZJ, He LF, et al. Physical and mechanical properties of bulk Ta4AlC3 ceramic prepared by an in situ reaction synthesis/hot-pressing method. J Am Ceram Soc 2007, 90:2542–2548.

    CAS  Article  Google Scholar 

  55. [55]

    Gong YM, Tian WB, Zhang PG, et al. Slip casting and pressureless sintering of Ti3AlC2. J Adv Ceram 2019, 8:367–376.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Thousand Talents Program of Sichuan Province, the Open Project of State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials (17kffk01), the Outstanding Young Scientific and Technical Talents in Sichuan Province (2019JDJQ0009), and the National Natural Science Foundation of China (Nos. 51741208 and 52072311).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chunfeng Hu.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Niu, Y., Fu, S., Zhang, K. et al. Synthesis, microstructure, and properties of high purity Mo2TiAlC2 ceramics fabricated by spark plasma sintering. J Adv Ceram 9, 759–768 (2020). https://doi.org/10.1007/s40145-020-0412-7

Download citation

Keywords

  • MAX phase
  • Mo2TiAlC2
  • synthesis
  • microstructure
  • properties