Fabrication, microstructures, and optical properties of Yb:Lu2O3 laser ceramics from co-precipitated nano-powders

Abstract

The Yb:Lu2O3 precursor made up of spherical particles was synthesized through the co-precipitation method in the water/ethanol solvent. The 5 at% Yb:Lu2O3 powder is in the cubic phase after calcination at 1100 °C for 4 h. The powder also consists of spherical nanoparticles with the average particle and grain sizes of 96 and 49 nm, respectively. The average grain size of the pre-sintered ceramic sample is 526 nm and that of the sample by hot isostatic pressing grows to 612 nm. The 1.0 mm-thick sample has an in-line transmittance of 81.6% (theoretical value of 82.2%) at 1100 nm. The largest absorption cross-section at 976 nm is 0.96×10−20 cm2 with the emission cross-section at 1033 nm of 0.92×10−20 cm2 and the gain cross sections are calculated with the smallest population inversion parameter β of 0.059. The highest slope efficiency of 68.7% with the optical efficiency of 65.1% is obtained at 1033.3 nm in quasi-continuous wave (QCW) pumping. In the case of continuous wave (CW) pumping, the highest slope efficiency is 61.0% with the optical efficiency of 54.1%. The obtained laser performance indicates that Yb:Lu2O3 ceramics have excellent resistance to thermal load stresses, which shows great potential in high-power solid-state laser applications.

References

  1. [1]

    Raybaut P, Druon F, Balembois F, et al. Directly diode-pumped Yb3+:SrY4(SiO4)3O regenerative amplifier. Opt Lett 2003, 28: 2195.

    CAS  Article  Google Scholar 

  2. [2]

    Heuer AM, Saraceno CJ, Beil K, et al. Efficient OPSL-pumped mode-locked Yb: Lu2O3 laser with 67% optical-to-optical efficiency. Sci Rep 2016, 6: 19090.

    CAS  Article  Google Scholar 

  3. [3]

    Krupke WF. Ytterbium solid-state lasers. The first decade. IEEE J Sel Top Quantum Electron 2000, 6: 1287–1296.

    CAS  Article  Google Scholar 

  4. [4]

    Liu WP, Kou HM, Li J, et al. Transparent Yb:(LuxSc1−x)2O3 ceramics sintered from carbonate co-precipitated powders. Ceram Int 2015, 41: 6335–6339.

    CAS  Article  Google Scholar 

  5. [5]

    Guyot Y, Guzik M, Alombert-Goget G, et al. Assignment of Yb3+ energy levels in the C2 and C3i centers of Lu2O3 sesquioxide either as ceramics or as crystal. J Lumin 2016, 170: 513–519.

    CAS  Article  Google Scholar 

  6. [6]

    Dong J, Shirakawa A, Ueda KI, et al. Laser-diode pumped heavy-doped Yb: YAG ceramic lasers. Opt Lett 2007, 32: 1890.

    CAS  Article  Google Scholar 

  7. [7]

    Bagayev SN, Osipov VV, Shitov VA, et al. Fabrication and optical properties of Y2O3-based ceramics with broad emission bandwidth. J Eur Ceram Soc 2012, 32: 4257–4262.

    CAS  Article  Google Scholar 

  8. [8]

    Wei JB, Toci G, Pirri A, et al. Fabrication and property of Yb: CaF2 laser ceramics from Co-precipitated nanopowders. J Inorg Mater 2019, 34: 1341.

    Article  Google Scholar 

  9. [9]

    Kaskow M, Galecki L, Jabczynski JK, et al. Diode-side-pumped, passively Q-switched Yb:LuAG laser. Opt Laser Tech 2015, 73: 101–104.

    CAS  Article  Google Scholar 

  10. [10]

    Pirri A, Toci G, Li J, et al. A comprehensive characterization of a 10 at.% Yb: YSAG laser ceramic sample. Materials 2018, 11: 837.

    Article  CAS  Google Scholar 

  11. [11]

    Pirri A, Toci G, Vannini M. First laser oscillation and broad tunability of 1 at% Yb-doped Sc2O3 and Lu2O3 ceramics. Opt Lett 2011, 36: 4284.

    CAS  Article  Google Scholar 

  12. [12]

    McMillen CD, Sanjeewa LD, Moore CA, et al. Crystal growth and phase stability of Ln: Lu2O3(Ln=Ce,Pr,Nd,Sm, Eu,Tb,Dy,Ho,Er,Tm,Yb) in a higher-temperature hydrothermal regime. J Cryst Growth 2016, 452: 146–150.

    CAS  Article  Google Scholar 

  13. [13]

    Maksimov RN, Esposito L, Hostaša J, et al. Densification and phase transition of Yb-doped Lu2O3 nanoparticles synthesized by laser ablation. Mater Lett 2016, 185: 396–398.

    CAS  Article  Google Scholar 

  14. [14]

    Sanghera J, Shaw B, Kim W, et al. Ceramic laser materials. Proc SPIE 2011, 7912:79121Q–1.

    Article  Google Scholar 

  15. [15]

    Gaumé R, Viana B, Vivien D, et al. A simple model for the prediction of thermal conductivity in pure and doped insulating crystals. Appl Phys Lett 2003, 83: 1355–1357.

    Article  CAS  Google Scholar 

  16. [16]

    Guzik M, Pejchal J, Yoshikawa A, et al. Structural investigations of Lu2O3 as single crystal and polycrystalline transparent ceramic. Cryst Growth Des 2014, 14: 3327–3334.

    CAS  Article  Google Scholar 

  17. [17]

    Takaichi K, Yagi H, Shirakawa A, et al. Lu2O3:Yb3+ ceramics—A novel gain material for high-power solid-state lasers. Phys Stat Sol (a) 2005, 202: R1–R3.

    CAS  Article  Google Scholar 

  18. [18]

    Kitajima S, Nakao H, Shirakawa A, et al. CW performance and temperature observation of Yb:Lu2O3 ceramic thin-disk laser. In Laser Congress 2017 (ASSL, LAC). OSA Technical Digest, Optical Society of America, 2017: JM5A.32.

  19. [19]

    Sanghera J, Kim W, Baker C, et al. Laser oscillation in hot pressed 10% Yb3+:Lu2O3 ceramic. Opt Mater 2011, 33: 670–674.

    CAS  Article  Google Scholar 

  20. [20]

    Kim W, Baker C, Villalobos G, et al. Synthesis of high purity Yb3+-doped Lu2O3 powder for high power solid-state lasers. J Am Ceram Soc 2011, 94: 3001–3005.

    CAS  Article  Google Scholar 

  21. [21]

    Yin DL, Ma J, Liu P, et al. Submicron-grained Yb:Lu2O3 transparent ceramics with lasing quality. J Am Ceram Soc 2019, 102: 2587–2592.

    CAS  Google Scholar 

  22. [22]

    Dong LL, Ma MZ, Jing W, et al. Synthesis of highly sinterable Yb:Lu2O3 nanopowders via spray co-precipitation for transparent ceramics. Ceram Int 2019, 45: 19554–19561.

    CAS  Article  Google Scholar 

  23. [23]

    Wang QQ, Shi Y, Feng YG, et al. Spectral characteristics and laser parameters of solar pumped Cr, Nd:YAG transparent ceramics. Chin J Lumin 2019, 40: 1365–1372.

    Article  Google Scholar 

  24. [24]

    Li XY, Liu Q, Hu ZW, et al. Influence of ammonium hydrogen carbonate to metal ions molar ratio on co-precipitated nanopowders for TGG transparent ceramics. J Inorg Mater 2019, 34: 791–797.

    Article  Google Scholar 

  25. [25]

    Balabanov SS, Permin DA, Rostokina EY, et al. Sinterability of nanopowders of terbia solid solutions with scandia, yttria, and Lutetia. J Adv Ceram 2018, 7: 362–369.

    CAS  Article  Google Scholar 

  26. [26]

    Dai YH, Li J, Zhang Y, et al. Preparation of Er,Yb:(LaLu)2O3 ceramic and its upconversion luminescent properties. Chin J Lumin 2018, 39: 488–493.

    Article  Google Scholar 

  27. [27]

    Liu ZY, Toci G, Pirri A, et al. Fabrication and laser operation of Yb:Lu2O3 transparent ceramics from co-precipitated nano-powders. J Am Ceram Soc 2019, 102: 7491–7499.

    CAS  Article  Google Scholar 

  28. [28]

    Liu Q, Li JB, Dai JW, et al. Fabrication, microstructure and spectroscopic properties of Yb:Lu2O3 transparent ceramics from co-precipitated nanopowders. Ceram Int 2018, 44: 11635–11643.

    CAS  Article  Google Scholar 

  29. [29]

    Wu HJ, Pan GH, Hao ZD, et al. Laser-quality Tm:(Lu0.8 Sc0.2)2O3 mixed sesquioxide ceramics shaped by gelcasting of well-dispersed nanopowders. J Am Ceram Soc 2019, 102: 4919–4928.

    CAS  Article  Google Scholar 

  30. [30]

    Chen SF, Yu SH, Yu B, et al. Solvent effect on mineral modification: Selective synthesis of cerium compounds by a facile solution route. Chem Eur J 2004, 10: 3050–3058.

    CAS  Article  Google Scholar 

  31. [31]

    Chen SF, Yu SH, Jiang J, et al. Polymorph discrimination of CaCO3 mineral in an ethanol/water solution: Formation of complex vaterite superstructures and aragonite rods. ChemInform 2006, 37: 115–122.

    Google Scholar 

  32. [32]

    Feng YG, Toci G, Pirri A, et al. Fabrication, microstructure, and optical properties of Yb:Y3ScAl4O12 transparent ceramics with different doping levels. J Am Ceram Soc 2020, 103: 224–234.

    CAS  Article  Google Scholar 

  33. [33]

    Dai ZF, Liu Q, Toci G, et al. Fabrication and laser oscillation of Yb:Sc2O3 transparent ceramics from co-precipitated nano-powders. J Eur Ceram Soc 2018, 38: 1632–1638.

    CAS  Article  Google Scholar 

  34. [34]

    Cai S, Lu B, Chen HB, et al. Homogeneous (Lu1−xInx)2O3 (x = 0–1) solid solutions: Controlled synthesis, structure features and optical properties. Powder Technol 2017, 317: 224–229.

    CAS  Article  Google Scholar 

  35. [35]

    Sun ZG, Chen ZY, Wang MY, et al. Production and optical properties of Ce3+-activated and Lu3+-stabilized transparent gadolinium aluminate garnet ceramics. J Am Ceram Soc 2020, 103: 809–818.

    CAS  Article  Google Scholar 

  36. [36]

    Monshi A, Foroughi MR, Monshi MR. Modified scherrer equation to estimate more accurately nano-crystallite size using XRD. World J Nano Sci Eng 2012, 2: 154–160.

    Article  CAS  Google Scholar 

  37. [37]

    Li SS, Zhu XW, Li J, et al. Fabrication of 5at.%Yb: (La0.1Y0.9)2O3 transparent ceramics by chemical precipitation and vacuum sintering. Opt Mater 2017, 71: 56–61.

    CAS  Article  Google Scholar 

  38. [38]

    Toci G, Hostaša J, Patrizi B, et al. Fabrication and laser performances of Yb:Sc2O3 transparent ceramics from different combination of vacuum sintering and hot isostatic pressing conditions. J Eur Ceram Soc 2020, 40: 881–886.

    CAS  Article  Google Scholar 

  39. [39]

    Harris DC. Materials for infrared windows and domes: properties and performance. Opt Photonics News 1999: 21–25.

  40. [40]

    Kaminskii AA, Sh Akchurin M, Becker P, et al. Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants. Laser Phys Lett 2008, 5: 300–303.

    CAS  Article  Google Scholar 

  41. [41]

    McCumber DE. Einstein relations connecting broadband emission and absorption spectra. Phys Rev 1964, 136: a954.

    Article  Google Scholar 

  42. [42]

    Laversenne L, Guyot Y, Goutaudier C, et al. Optimization of spectroscopic properties of Yb3+-doped refractory sesquioxides: Cubic Y2O3, Lu2O3 and monoclinic Gd2O3. Opt Mater 2001, 16: 475–483.

    CAS  Article  Google Scholar 

  43. [43]

    Gan FX, Deng PZ. Laser Materials. Shanghai, China: Shanghai Science and Technology Press, 1996.

    Google Scholar 

  44. [44]

    Kühn H, Fredrich-Thornton ST, Kränkel C, et al. Model for the calculation of radiation trapping and description of the pinhole method. Opt Lett 2007, 32: 1908–1910.

    Article  Google Scholar 

  45. [45]

    Toci G. Lifetime measurements with the pinhole method in presence of radiation trapping: I—theoretical model. Appl Phys B 2012, 106: 63–71.

    CAS  Article  Google Scholar 

  46. [46]

    Toci G, Alderighi D, Pirri A, et al. Lifetime measurements with the pinhole method in presence of radiation trapping: II—application to Yb3+ doped ceramics and crystals. Appl Phys B 2012, 106: 73–79.

    CAS  Article  Google Scholar 

  47. [47]

    Petermann K, Fagundes-Peters D, Johannsen J, et al. Highly Yb-doped oxides for thin-disc lasers. J Cryst Growth 2005, 275: 135–140.

    CAS  Article  Google Scholar 

  48. [48]

    Peters R, Kränkel C, Petermann K, et al. Crystal growth by the heat exchanger method, spectroscopic characterization and laser operation of high-purity Yb:Lu2O3. J Cryst Growth 2008, 310: 1934–1938.

    CAS  Article  Google Scholar 

  49. [49]

    Caird JA, Payne SA, Staber PR, et al. Quantum electronic properties of the Na3/Ga2/Li3F12:Cr3+ laser. IEEE J Quantum Electron 1988, 24:1077–1099.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key R&D Program of China (Grant No. 2017YFB0310500), the National Natural Science Foundation of China (Grant No. 61575212), and the Key Research Project of the Frontier Science of the Chinese Academy of Sciences (No. QYZDB-SSW-JSC022).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jiang Li.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Toci, G., Pirri, A. et al. Fabrication, microstructures, and optical properties of Yb:Lu2O3 laser ceramics from co-precipitated nano-powders. J Adv Ceram (2020). https://doi.org/10.1007/s40145-020-0403-8

Download citation

Keywords

  • Yb:Lu2O3 transparent ceramics
  • co-precipitated nano-powder
  • spectroscopic properties
  • laser performance
  • hot isostatic pressing