Development of calcium stabilized nitrogen rich α-sialon ceramics along the Si3N4:1/2Ca3N2:3AlN line using spark plasma sintering

Abstract

Calcium stabilized nitrogen rich sialon ceramics having a general formula of CaxSi12-2xAl2xN16 with x value (x is the solubility of cation Ca in α-sialon structure) in the range of 0.2–2.2 for compositions lying along the Si3N4:1/2Ca3N2:3AlN line were synthesized using nano/submicron size starting powder precursors and spark plasma sintering (SPS) technique. The development of calcium stabilized nitrogen rich sialon ceramics at a significantly low sintering temperature of 1500 °C (typically reported a temperature of 1700 °C or greater) remains to be the highlight of the present study. The SPS processed sialons were characterized for their microstructure, phase and compositional analysis, and physical and mechanical properties. Furthermore, a correlation was developed between the lattice parameters and the content (x) of the alkaline metal cation in the α-sialon phase. Well-densified single-phase nitrogen rich α-sialon ceramics were achieved in the range of 0.53(3) ⩽ x ⩽ 1.27(3). A nitrogen rich α-sialon sample possessing a maximum hardness of 22.4 GPa and fracture toughness of 6.1 MPa·m1/2 was developed.

References

  1. [1]

    Sun WY, Tien TY, Yen TS. Subsolidus phase relationships in part of the system Si, Al, Y/N, O: The system Si3N4AINYNAl2O3Y2O3. J Am Ceram Soc 1991, 74: 2753–2758.

    CAS  Article  Google Scholar 

  2. [2]

    Xie RJ, Hirosaki N, Sakuma K, et al. Eu2+-doped Ca-α-SiAlON: A yellow phosphor for white light-emitting diodes. Appl Phys Lett 2004, 84: 5404–5406.

    CAS  Article  Google Scholar 

  3. [3]

    Grins J, Esmaeilzadeh S, Shen ZJ. Structures of filled α-Si3N4-type Ca0.27La0.03Si11.38Al0.62N16 and LiSi9Al3O2N14. J Am Ceram Soc 2003, 86: 727–30.

    CAS  Article  Google Scholar 

  4. [4]

    Suzuki S, Nasu T, Hayama S, et al. Mechanical and thermal properties of beta'-sialon prepared by a slip casting method. J Am Ceram Soc 1996, 79: 1685–1688.

    CAS  Article  Google Scholar 

  5. [5]

    Izumi F, Mitomo M, Bando Y. Rietveld refinements for calcium and yttrium containing α-sialons. J Mater Sci 1984, 19: 3115–3120.

    CAS  Article  Google Scholar 

  6. [6]

    Pomeroy MJ, Mulcahy C, Hampshire S. Independent effects of nitrogen substitution for oxygen and yttrium substitution for magnesium on the properties of Mg-Y-Si-Al-O-N glasses. J Am Ceram Soc 2003, 86: 458–464.

    CAS  Article  Google Scholar 

  7. [7]

    Lavrenko VA, Gogotsi YG, Shcherbina OD. Kinetics and mechanism of oxidation of sialons. Powder Metall Met Ceram 1985, 24: 710–713.

    Article  Google Scholar 

  8. [8]

    Persson J, Ekström T, Käll PO, et al. Oxidation behaviour and mechanical properties of β- and mixed α-β-sialons sintered with additions of Y2O3 and Nd2O3. J Eur Ceram Soc 1993, 11: 363–373.

    CAS  Article  Google Scholar 

  9. [9]

    Liu LH, Xie RJ, Hirosaki N, et al. Photoluminescence properties of β-SiAlON: Yb2+, a novel green-emitting phosphor for white light-emitting diodes. Sci Technol Adv Mater 2011, 12: 034404.

    Article  CAS  Google Scholar 

  10. [10]

    Wang PL, Zhang C, Sun WY, et al. Characteristics of Ca-α-sialon-Phase formation, microstructure and mechanical properties. J Eur Ceram Soc 1999, 19: 553–560.

    CAS  Article  Google Scholar 

  11. [11]

    van Rutten JWT, Hintzen HT, Metselaar R. Phase formation of Ca-α-sialon by reaction sintering. J Eur Ceram Soc 1996, 16: 995–999.

    CAS  Article  Google Scholar 

  12. [12]

    Riley FL. Silicon nitride and related materials. J Am Ceram Soc 2004, 83: 245–265.

    Article  Google Scholar 

  13. [13]

    Hampshire S, Park HK, Thompson DP, et al. α'-Sialon ceramics. Nature 1978, 274: 880–882.

    CAS  Article  Google Scholar 

  14. [14]

    Huang ZK, Greil P, Petzow G. Formation of alpha-Si3N4 solid solutions in the system Si3N4-A1N-Y2O3. J Am Ceram Soc 1983, 66: C–96–C–97.

    Article  Google Scholar 

  15. [15]

    Huang ZK, Tien TY, Yen TS. Subsolidus phase relationships in Si3N4-AlN-rare-earth oxide systems. J Am Ceram Soc 1986, 69: C–241–C–242.

    Article  Google Scholar 

  16. [16]

    Kuang SF, Huang ZK, Sun WY, et al. Phase relationships in the Li2O-Si3N4-AlN system and the formation of lithium-α-sialon. J Mater Sci Lett 1990, 9: 72–74.

    CAS  Article  Google Scholar 

  17. [17]

    Huang ZK, Sun WY, Yan DS. Phase relations of the Si3N4-AIN-CaO system. J Mater Sci Lett 1985, 4: 255–259.

    Article  Google Scholar 

  18. [18]

    Herrmann M, Kurama S, Mandal H. Investigation of the phase composition and stability of the α-SiAlONs by the Rietveld method. J Eur Ceram Soc 2002, 22: 2997–3005.

    CAS  Article  Google Scholar 

  19. [19]

    Kurama S, Herrmann M, Mandal H. The effect of processing conditions, amount of additives and composition on the microstructures and mechanical properties of α-SiAlON ceramics. J Eur Ceram Soc 2002, 22: 109–119.

    CAS  Article  Google Scholar 

  20. [20]

    Sheu TS. Microstructure and mechanical properties of the in situ beta-Si3N4/alpha'-SiAlON composite. J Am Ceram Soc 1994, 77: 2345–2353.

    CAS  Article  Google Scholar 

  21. [21]

    Ekstrom T, Nygren M. SiAION ceramics. J Am Ceram Soc 1992, 75: 259–276.

    Article  Google Scholar 

  22. [22]

    Mandal H, Thompson DP. Sialon transformation in calciumcontaining α-SiAlON ceramics. J Eur Ceram Soc 1999, 19: 543–552.

    CAS  Article  Google Scholar 

  23. [23]

    Xie R, Mitomo M, Bando Y. Preparation of Ca-α-sialon ceramics with compositions along the Si3N4-1/2Ca3N2: 3AlN line. Z Met 2001, 92: 931–936.

    CAS  Google Scholar 

  24. [24]

    Cai YB. Synthesis and characterization of nitrogen-rich calcium α-sialon ceramics. Ph.D. Thesis. Stockholm, Sweden: Stockholm University, 2009.

    Google Scholar 

  25. [25]

    Wood CA, Zhao H, Cheng YB. Microstructural development of calcium alpha-SiAlON ceramics with elongated grains. J Am Ceram Soc 2004, 82: 421–428.

    Article  Google Scholar 

  26. [26]

    Ye F, Hoffmann MJ, Holzer S, et al. Effect of the amount of additives and post-heat treatment on the microstructure and mechanical properties of yttrium-α-sialon ceramics. J Am Ceram Soc 2003, 86: 2136–2142.

    CAS  Article  Google Scholar 

  27. [27]

    Shen ZJ, Peng H, Nygren M. Formation of in situ reinforced microstructure in α-sialon ceramics I: Stoichiometric oxygen-rich compositions. J Mater Res 2002, 17: 336–342.

    CAS  Article  Google Scholar 

  28. [28]

    Cai YB, Shen ZJ, Grins J, et al. Self-reinforced nitrogenrich calcium α-SiAlON ceramics. J Am Ceram Soc 2007, 90: 608–613.

    CAS  Article  Google Scholar 

  29. [29]

    Information on https://en.wikipedia.org/w/index.php?title=Hot_pressing&oldid=827939071.

  30. [30]

    Information on http://www.fct-systeme.de/en/content/Spark_Plasma_Sinteranlagen/~nm.12~nc.26.

  31. [31]

    Khan RMA, Al Malki MM, Hakeem AS, et al. Development of a single-phase Ca-α-SiAlON ceramic from nanosized precursors using spark plasma sintering. Mater Sci Eng: A 2016, 673: 243–249.

    CAS  Article  Google Scholar 

  32. [32]

    Camuscu N, Thompson DP, Mandal H. Effect of starting composition, type of rare earth sintering additive and amount of liquid phase on αa ⇆ β sialon transformation. J Eur Ceram Soc 1997, 17: 599–613.

    CAS  Article  Google Scholar 

  33. [33]

    Ahmed BA, Hakeem AS, Laoui T, et al. Effect of precursor size on the structure and mechanical properties of calciumstabilized sialon/cubic boron nitride nanocomposites. J Alloys Compd 2017, 728: 836–843.

    CAS  Article  Google Scholar 

  34. [34]

    Irshad HM, Ahmed BA, Ehsan MA, et al. Investigation of the structural and mechanical properties of micro-/nanosized Al2O3 and cBN composites prepared by spark plasma sintering. Ceram Int 2017, 43: 10645–10653.

    CAS  Article  Google Scholar 

  35. [35]

    Al Malki MM, Khan RMA, Hakeem AS, et al. Effect of Al metal precursor on the phase formation and mechanical properties of fine-grained SiAlON ceramics prepared by spark plasma sintering. J Eur Ceram Soc 2017, 37: 1975–1983.

    CAS  Article  Google Scholar 

  36. [36]

    Ahmed BA, Hakeem AS, Laoui T, et al. Low-temperature spark plasma sintering of calcium stabilized alpha sialon using nano-size aluminum nitride precursor. Int J Refract Met Hard Mater 2018, 71: 301–306.

    CAS  Article  Google Scholar 

  37. [37]

    Information on http://www.chemicalbook.com/Chemical-ProductProperty_US_CB2672982.aspx.

  38. [38]

    Wang PL, Zhang C, Sun WY, et al. Formation behavior of multi-cation α-sialons containing calcium and magnesium. Mater Lett 1999, 38: 178–185.

    CAS  Article  Google Scholar 

  39. [39]

    Eser O, Kurama S. A comparison of sintering techniques using different particle sized β-SiAlON powders. J Eur Ceram Soc 2012, 32: 1343–1347.

    CAS  Article  Google Scholar 

  40. [40]

    Eser O, Kurama S. The effect of the wet-milling process on sintering temperature and the amount of additive of SiAlON ceramics. Ceram Int 2010, 36: 1283–1288.

    CAS  Article  Google Scholar 

  41. [41]

    Hewett CL, Cheng YB, Muddle BC, et al. Thermal stability of calcium α-sialon ceramics. J Eur Ceram Soc 1998, 18: 417–427.

    CAS  Article  Google Scholar 

  42. [42]

    Thorel A, Laval JY, Broussaud D. High temperature mechanical properties and intergranular structure of sialons. J Phys Colloques 1986, 47: C1–353–C1–357.

    Article  Google Scholar 

  43. [43]

    Witek SR, Miller GA, Harmer MP. Effects of CaO on the strength and toughness of AIN. J Am Ceram Soc 1989, 72: 469–473.

    CAS  Article  Google Scholar 

  44. [44]

    Xie ZH, Hoffman M, Cheng YB. Microstructural tailoring and characterization of a calcium α-SiAlON composition. J Am Ceram Soc 2004, 85: 812–818.

    Article  Google Scholar 

  45. [45]

    Zhang Y, Cheng YB. Grain boundary devitrification of Ca α-sialon ceramics and its relation with the fracture toughness. J Mater Sci Technol 2003, 38: 1359–1364.

    CAS  Google Scholar 

  46. [46]

    Lofaj F, Dorcakova F, Kovalcik J, et al. The effect of lanthanides and nitrogen on microhardness of oxynitride glasses. Kov Mater Mater 2003, 41: 145–157.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support provided by both King Fahd University of Petroleum and Minerals, Saudi Arabia, and the University of Sharjah, United Arab Emirates.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to T. Laoui or A. S. Hakeem.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahmed, B.A., Laoui, T. & Hakeem, A.S. Development of calcium stabilized nitrogen rich α-sialon ceramics along the Si3N4:1/2Ca3N2:3AlN line using spark plasma sintering. J Adv Ceram 9, 606–616 (2020). https://doi.org/10.1007/s40145-020-0400-y

Download citation

Keywords

  • nitrogen rich sialon ceramics
  • α-sialon
  • calcium sialons
  • spark plasma sintering (SPS)
  • liquid phase sintering