High-entropy (Nd0.2Sm0.2Eu0.2Y0.2Yb0.2)4Al2O9 with good high temperature stability, low thermal conductivity, and anisotropic thermal expansivity

Abstract

The critical requirements for the environmental barrier coating (EBC) materials of silicon-based ceramic matrix composites (CMCs) include good tolerance to harsh environments, thermal expansion matches with the interlayer mullite, good high-temperature phase stability, and low thermal conductivity. Cuspidine-structured rare-earth aluminates RE4Al2O9 have been considered as candidates of EBCs for their superior mechanical and thermal properties, but the phase transition at high temperatures is a notable drawback of these materials. To suppress the phase transition and improve the phase stability, a novel cuspidine-structured rare-earth aluminate solid solution (Nd0.2Sm0.2Eu0.2Y0.2Yb0.2)4Al2O9 was designed and successfully synthesized inspired by entropy stabilization effect of high-entropy ceramics (HECs). The as-synthesized HE (Nd0.2Sm0.2Eu0.2Y0.2Yb0.2)4Al2O9 exhibits a close thermal expansion coefficient (6.96×10-6 K-1 at 300–1473 K) to that of mullite, good phase stability from 300 to 1473 K, and low thermal conductivity (1.50 W·m–1·K–1 at room temperature). In addition, strong anisotropic thermal expansion has been observed compared to Y4Al2O9 and Yb4Al2O9. The mechanism for low thermal conductivity is attributed to the lattice distortion and mass difference of the constituent atoms, and the anisotropic thermal expansion is due to the anisotropic chemical bonding enhanced by the large size rare-earth cations.

References

  1. [1]

    Klemm H. Silicon nitride for high-temperature applications. J Am Ceram Soc 2010, 93: 1501–1522.

    CAS  Article  Google Scholar 

  2. [2]

    Naslain R, Christin F. SiC-matrix composite materials for advanced jet engines. MRS Bull 2003, 28: 654–658.

    CAS  Article  Google Scholar 

  3. [3]

    Naslain R. Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: An overview. Compos Sci Technol 2004, 64: 155–170.

    CAS  Article  Google Scholar 

  4. [4]

    Becher PF, Hsueh CH, Angelini P, et al. Toughening behavior in whisker-reinforced ceramic matrix composites. J Am Ceram Soc 1988, 71: 1050–1061.

    CAS  Article  Google Scholar 

  5. [5]

    Igawa N, Taguchi T, Nozawa T, et al. Fabrication of SiC fiber reinforced SiC composite by chemical vapor infiltration for excellent mechanical properties. J Phys Chem Solids 2005, 66: 551–554.

    CAS  Article  Google Scholar 

  6. [6]

    Jacobson NS. Corrosion of silicon-based ceramics in combustion environments. J Am Ceram Soc 1993, 76: 3–28.

    CAS  Article  Google Scholar 

  7. [7]

    Smialek JL, Robinson RC, Opila EJ, et al. SiC and Si3N4 recession due to SiO2 scale volatility under combustor conditions. Adv Compos Mater 1999, 8: 33–45.

    CAS  Article  Google Scholar 

  8. [8]

    Klemm H, Taut C, Wötting G. Long-term stability of nonoxide ceramics in an oxidative environment at 1500 °C. J Eur Ceram Soc 2003, 23: 619–627.

    CAS  Article  Google Scholar 

  9. [9]

    Tortorelli PF, More KL. Effects of high water-vapor pressure on oxidation of silicon carbide at 1200 °C. J Am Ceram Soc 2003, 86: 1249–1255.

    CAS  Article  Google Scholar 

  10. [10]

    More KL, Tortorelli PF, Walker LR, et al. Hightemperature stability of SiC-based composites in highwater- vapor-pressure environments. J Am Ceram Soc 2003, 86: 1272–1281.

    CAS  Article  Google Scholar 

  11. [11]

    Opila EJ. Oxidation and volatilization of silica formers in water vapor. J Am Ceram Soc 2003, 86: 1238–1248.

    CAS  Article  Google Scholar 

  12. [12]

    Lee KN. Current status of environmental barrier coatings for Si-based ceramics. Surf Coat Technol 2000, 133-134: 1–7.

    CAS  Article  Google Scholar 

  13. [13]

    Lee KN, Fox DS, Bansal NP. Rare earth silicate environmental barrier coatings for SiC/SiC composites and Si3N4 ceramics. J Eur Ceram Soc 2005, 25: 1705–1715.

    CAS  Article  Google Scholar 

  14. [14]

    Richards BT, Wadley HNG. Plasma spray deposition of tri-layer environmental barrier coatings. J Eur Ceram Soc 2014, 34: 3069–3083.

    CAS  Article  Google Scholar 

  15. [15]

    Lee KN, Miller RA. Development and environmental durability of mullite and mullite/YSZ dual layer coatings for SiC and Si3N4 ceramics. Surf Coat Technol 1996, 86: 142–148.

    Article  Google Scholar 

  16. [16]

    Xiang HM, Feng ZH, Li ZP, et al. Crystal structure, mechanical and thermal properties of Yb4Al2O9: A combination of experimental and theoretical investigations. J Eur Ceram Soc 2017, 37: 2491–2499.

    CAS  Article  Google Scholar 

  17. [17]

    Lee KN, Miller RA, Jacobson NS. New generation of plasma-sprayed mullite coatings on silicon carbide. J Am Ceram Soc 1995, 78: 705–710.

    CAS  Article  Google Scholar 

  18. [18]

    Zhou YC, Xiang HM, Lu XP, et al. Theoretical prediction on mechanical and thermal properties of a promising thermal barrier material: Y4Al2O9. J Adv Ceram 2015, 4: 83–93.

    CAS  Article  Google Scholar 

  19. [19]

    Zhou YC, Lu XP, Xiang HM, et al. Preparation, mechanical, and thermal properties of a promising thermal barrier material: Y4Al2O9. J Adv Ceram 2015, 4: 94–102.

    CAS  Article  Google Scholar 

  20. [20]

    Morán-Ruiz A, Vidal K, Larrañaga A, et al. Characterization of Ln4Al2O9 (Ln = Y, Sm, Eu, Gd, Tb) rare-earth aluminates as novel high-temperature barrier materials. Ceram Int 2018, 44: 8761–8767.

    Article  CAS  Google Scholar 

  21. [21]

    Lee KN. Environmental barrier coatings for SiCf/SiC. In Ceramic Matrix Composites. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014: 430–451.

    Google Scholar 

  22. [22]

    Yamane H, Ogawara K, Omori M, et al. Thermal expansion and athermal phase transition of Y4AI2O9 ceramics. J Am Ceram Soc 1995, 78: 1230–1232.

    CAS  Article  Google Scholar 

  23. [23]

    Gervais M, Douy A. Solid phase transformation and metlting of the compounds Ln4Al2O9 (Ln, Gd, Dy, Y). Mater Sci Eng: B 1996, 38: 118–121.

    Article  Google Scholar 

  24. [24]

    Yamane H, Sakamoto T, Kubota S, et al. Preparation and phase transition of Gd4(Al1-xGax)2O9 solid solutions. J Mater Sci 2001, 36: 307–311.

    CAS  Article  Google Scholar 

  25. [25]

    Yamane H, Ogawara K, Omori M, et al. Phase transition of rare-earth aluminates (RE4Al2O9) and rare-earth gallates (RE4Ga2O9). J Am Ceram Soc 1995, 78: 2385–2390.

    CAS  Article  Google Scholar 

  26. [26]

    Rost CM, Sachet E, Borman T, et al. Entropy-stabilized oxides. Nat Commun 2015, 6: 8485.

    CAS  Article  Google Scholar 

  27. [27]

    Chen KP, Pei XT, Tang L, et al. A five-component entropy-stabilized fluorite oxide. J Eur Ceram Soc 2018, 38: 4161–4164.

    CAS  Article  Google Scholar 

  28. [28]

    Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater 2017, 122: 448–511.

    CAS  Article  Google Scholar 

  29. [29]

    Yan XL, Constantin L, Lu YF, et al. (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity. J Am Ceram Soc 2018, 101: 4486–4491.

    CAS  Article  Google Scholar 

  30. [30]

    Zhao ZF, Xiang HM, Dai FZ, et al. (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)2Zr2O7: A novel high-entropy ceramic with low thermal conductivity and sluggish grain growth rate. J Mater Sci Technol 2019, 35: 2647–2651.

    Article  Google Scholar 

  31. [31]

    Zhao ZF, Chen H, Xiang HM, et al. (Y0.25Yb0.25Er0.25Lu0.25)2(Zr0.5Hf0.5)2O7: A defective fluorite structured high entropy ceramic with low thermal conductivity and close thermal expansion coefficient to Al2O3. J Mater Sci Technol 2020, 39: 167–172.

    Article  Google Scholar 

  32. [32]

    Zhao ZF, Chen H, Xiang HM, et al. (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4: A high-entropy rare-earth phosphate monazite ceramic with low thermal conductivity and good compatibility with Al2O3. J Mater Sci Technol 2019, 35: 2892–2896.

    Article  Google Scholar 

  33. [33]

    Chen H, Zhao B, Zhao ZF, et al. Achieving strong microwave absorption capability and wide absorption bandwidth through a combination of high entropy rare earth silicide carbides/rare earth oxides. J Mater Sci Technol 2020, 47: 216–222.

    Article  Google Scholar 

  34. [34]

    Dong Y, Ren K, Lu YH, et al. High-entropy environmental barrier coating for the ceramic matrix composites. J Eur Ceram Soc 2019, 39: 2574–2579.

    CAS  Article  Google Scholar 

  35. [35]

    Zhao ZF, Xiang HM, Dai FZ, et al. (TiZrHf)P2O7: An equimolar multicomponent or high entropy ceramic with good thermal stability and low thermal conductivity. J Mater Sci Technol 2019, 35: 2227–2231.

    Article  Google Scholar 

  36. [36]

    Zhao ZF, Chen H, Xiang HM, et al. High-entropy (Y0.2Nd0.2Sm0.2Eu0.2Er0.2)AlO3: A promising thermal/environmental barrier material for oxide/oxide composites. J Mater Sci Technol 2020, 47: 45–51.

    Article  Google Scholar 

  37. [37]

    Leitner J, Vołka P, Sedmidubský D, et al. Application of Neumann-Kopp rule for the estimation of heat capacity of mixed oxides. Thermochimica Acta 2010, 497: 7–13.

    CAS  Article  Google Scholar 

  38. [38]

    Barin II. Thermochemical Data of Pure Substances. 3rd edn. Germany: VCH Verlagsgesellschaft mbH, 1995.

    Google Scholar 

  39. [39]

    Parker WJ, Jenkins RJ, Butler CP, et al. Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J Appl Phys 1961, 32: 1679–1684.

    CAS  Article  Google Scholar 

  40. [40]

    Zhan X, Li Z, Liu B, et al. Theoretical prediction of elastic stiffness and minimum lattice thermal conductivity of Y3Al5O12, YAlO3 and Y4Al2O9. J Am Ceram Soc 2012, 95: 1429–1434.

    CAS  Article  Google Scholar 

  41. [41]

    Schneider H, Fischer RX, Schreuer J. Mullite: crystal structure and related properties. J Am Ceram Soc 2015, 98: 2948–2967.

    CAS  Article  Google Scholar 

  42. [42]

    Sun ZQ, Zhou YC, Wang JY, et al. Thermal properties and thermal shock resistance of γ-Y2Si2O7. J Am Ceram Soc 2008, 91: 2623–2629.

    CAS  Article  Google Scholar 

  43. [43]

    Sun ZQ, Li MS, Zhou YC. Thermal properties of single-phase Y2SiO5. J Eur Ceram Soc 2009, 29: 551–557.

    CAS  Article  Google Scholar 

  44. [44]

    Lu MH, Xiang HM, Feng ZH, et al. Mechanical and thermal properties of Yb2SiO5: A promising material for T/EBCs applications. J Am Ceram Soc 2016, 99: 1404–1411.

    CAS  Article  Google Scholar 

  45. [45]

    Wang SB, Lu YR, Chen YX. Synthesis of single-phase β-Yb2Si2O7 and properties of its sintered bulk. Int J Appl Ceram Technol 2015, 12: 1140–1147.

    CAS  Article  Google Scholar 

  46. [46]

    Slack GA. Nonmetallic crystals with high thermal conductivity. J Phys Chem Solids 1973, 34: 321–335.

    CAS  Article  Google Scholar 

  47. [47]

    Slack GA. The thermal conductivity of nonmetallic crystals. Phys Rev B Solid State 1979, 34: 1–71.

    CAS  Article  Google Scholar 

  48. [48]

    Toberer ES, Zevalkink A, Snyder GJ. Phonon engineering through crystal chemistry. J Mater Chem 2011, 21: 15843–15852.

    CAS  Article  Google Scholar 

  49. [49]

    Chung JD, McGaughey AJH, Kaviany M. Role of phonon dispersion in lattice thermal conductivity modeling. J Heat Transf 2004, 126: 376–380.

    CAS  Article  Google Scholar 

  50. [50]

    Klemens PG. The scattering of low-frequency lattice waves by static imperfections. Proc Phys Soc A 1955, 68: 1113–1128.

    Article  Google Scholar 

  51. [51]

    Dai FZ, Wen B, Sun YJ, et al. Theoretical prediction on thermal and mechanical properties of high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C by deep learning potential. J Mater Sci Technol 2020, 43: 168–174.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the National Natural Science Foundation of China (Grant Nos. 51672064 and 51972089).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Zhijian Peng or Yanchun Zhou.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Xiang, H., Chen, H. et al. High-entropy (Nd0.2Sm0.2Eu0.2Y0.2Yb0.2)4Al2O9 with good high temperature stability, low thermal conductivity, and anisotropic thermal expansivity. J Adv Ceram 9, 595–605 (2020). https://doi.org/10.1007/s40145-020-0399-0

Download citation

Keywords

  • (Nd0.2Sm0.2Eu0.2Y0.2Yb0.2)4Al2O9
  • high-entropy ceramics (HECs)
  • environmental barrier coatings
  • phase stability
  • thermal properties