Skip to main content

Zn2+ substituted superparamagnetic MgFe2O4 spinel-ferrites: Investigations on structural and spin-interactions

Abstract

Nano-magnetic ferrites with composition Mg1−xZnxFe2O4 (x = 0.3, 0.4, 0.5, 0.6, and 0.7) have been prepared by coprecipitation method. X-ray diffraction (XRD) studies showed that the lattice parameter was found to increase from 8.402 to 8.424 Å with Zn2+ ion content from 0.3 to 0.7. Fourier transform infrared (FTIR) spectra revealed two prominent peaks corresponding to tetrahedral and octahedral at around 560 and 430 cm−1 respectively that confirmed the spinel phase of the samples. Transmission electron microscopy (TEM) images showed that the particle size was noted to increase from 18 to 24 nm with an increase in Zn content from x = 0.3 to 0.7. The magnetic properties were studied by vibrating sample magnetometer (VSM) and electron paramagnetic resonance (EPR) which ascertained the superparamagnetic behavior of the samples and contribution of superexchange interactions. The maximum magnetization was found to vary from 23.80 to 32.78 emu/g that increased till x = 0.5 and decreased thereafter. Further, X-ray photoelectron spectroscopy (XPS) was employed to investigate the chemical composition and substantiate their oxidation states.

References

  1. Singh SB, Srinivas C, Tirupanyam BV, et al. Structural, thermal and magnetic studies of MgxZn1−xFe2O4 nanoferrites: Study of exchange interactions on magnetic anisotropy. Ceram Int 2016, 42: 19179–19186.

    CAS  Google Scholar 

  2. Srinivas C, Tirupanyam BV, Meena SS, et al. Structural and magnetic characterization of co-precipitated NixZn1−xFe2O4 ferrite nanoparticles. J Magn Magn Mater 2016, 407: 135–141.

    CAS  Google Scholar 

  3. Rahman S, Nadeem K, Anis-Ur-rehman M, et al. Structural and magnetic properties of ZnMg-ferrite nanoparticles prepared using the co-precipitation method. Ceram Int 2013, 39: 5235–5239.

    CAS  Google Scholar 

  4. Ghatak S, Sinha M, Meikap AK, et al. Electrical transport behavior of nonstoichiometric magnesium-zinc ferrite. Mater Res Bull 2010, 45: 954–960.

    CAS  Google Scholar 

  5. Niaz Akhtar M, Yahya N, Sattar A, et al. Investigations of structural and magnetic properties of nanostructured Ni0.5+xZn0.5−xFe2O4 Magnetic feeders for CSEM application. Int J Appl Ceram Technol 2015, 12: 625–637.

    CAS  Google Scholar 

  6. Chahal S, Gaba S, Kumar A, et al. Effect of Mg2+ substitution on structural and magnetic properties of nano zinc ferrite. AIP Conf Proc 2018, 2006: 030014.

  7. Shultz MD, Calvin S, Fatouros PP, et al. Enhanced ferrite nanoparticles as MRI contrast agents. J Magn Magn Mater 2007, 311: 464–468.

    CAS  Google Scholar 

  8. Šepelák V, Bergmann I, Menzel D, et al. Magnetization enhancement in nanosized MgFe2O4 prepared by mechanosynthesis. J Magn Magn Mater 2007, 316: e764–e767.

  9. Ghosh R, Pradhan L, Devi YP, et al. Induction heating studies of Fe3O4 magnetic nanoparticles capped with oleic acid and polyethylene glycol for hyperthermia. J Mater Chem 2011, 21: 13388.

    CAS  Google Scholar 

  10. Jadhav NV, Prasad AI, Kumar A, et al. Synthesis of oleic acid functionalized Fe3O4 magnetic nanoparticles and studying their interaction with tumor cells for potential hyperthermia applications. Colloids Surfaces B: Biointerfaces 2013, 108: 158–168.

    CAS  Google Scholar 

  11. Masina P, Moyo T, Abdallah HMI. Synthesis, structural and magnetic properties of ZnxMg1−xFe2O4 nanoferrites. J Magn Magn Mater 2015, 381: 41–49.

    CAS  Google Scholar 

  12. Liu HY, Li AM, Ding XX, et al. Magnetic induction heating properties of Mg1−xZnxFe2O4 ferrites synthesized by co-precipitation method. Solid State Sci 2019, 93: 101–108.

    CAS  Google Scholar 

  13. Reyes-Rodríguez PY, Cortés-Hernández DA, Escobedo-Bocardo JC, et al. Structural and magnetic properties of Mg-Zn ferrites (Mg1−xZnxFe2O4) prepared by sol-gel method. J Magn Magn Mater 2017, 427: 268–271.

    Google Scholar 

  14. Kassabova-Zhetcheva V, Pavlova L, Samuneva B, et al. Characterization of superparamagnetic MgxZn1−xFe2O4 powders. Open Chem 2007, 5: 107–117.

    CAS  Google Scholar 

  15. Khot SS, Shinde NS, Ladgaonkar BP, et al. Magnetic and structural properties of magnesium zinc ferrites synthesized at different temperature. Adv Appl Sci Res 2011, 2: 460–471.

    CAS  Google Scholar 

  16. Rahman S, Nadeem K, Anis-Ur-rehman M, et al. Structural and magnetic properties of ZnMg-ferrite nanoparticles prepared using the co-precipitation method. Ceram Int 2013, 39: 5235–5239.

    CAS  Google Scholar 

  17. Choodamani C, Nagabhushana GP, Ashoka S, et al. Structural and magnetic studies of Mg(1−x)ZnxFe2O4 nanoparticles prepared by a solution combustion method. J Alloys Compd 2013, 578: 103–109.

    CAS  Google Scholar 

  18. Phor L, Kumar V. Self-cooling by ferrofluid in magnetic field. SN Appl Sci 2019, 1: 1696.

    CAS  Google Scholar 

  19. Mohammed KA, Al-Rawas AD, Gismelseed AM, et al. Infrared and structural studies of Mg1−xZnxFe2O4 ferrites. Physica B 2012, 407: 795–804.

    CAS  Google Scholar 

  20. Kumari N, Kumar V, Singh SK. Effect of Cr3+ substitution on properties of nano-ZnFe2O4. J Alloys Compd 2015, 622: 628–634.

    CAS  Google Scholar 

  21. Gul IH, Abbasi AZ, Amin F, et al. Structural, magnetic and electrical properties of Co1−xZnxFe2O4 synthesized by co-precipitation method. J Magn Magn Mater 2007, 311: 494–499.

    CAS  Google Scholar 

  22. Globus A, Pascard H, Cagan V. Distance between magnetic ions and fundamental properties in ferrites. J Phys Colloques 1977, 38: C1-163–C1-168.

  23. Mazen SA, Abdallah MH, Sabrah BA, et al. The effect of titanium on some physical properties of CuFe2O4. Phys Stat Sol (a) 1992, 134: 263–271.

    CAS  Google Scholar 

  24. Zaki HM, Al-Heniti SH, Elmosalami TA. Structural, magnetic and dielectric studies of copper substituted nano-crystalline spinel magnesium zinc ferrite. J Alloys Compd 2015, 633: 104–114.

    CAS  Google Scholar 

  25. Thakur P, Sharma R, Kumar M, et al. Superparamagnetic La doped Mn-Zn nano ferrites: Dependence on dopant content and crystallite size. Mater Res Express 2016, 3: 075001.

  26. Levine BF. D-electron effects on bond susceptibilities and ionicities. Phys Rev B 1973, 7: 2591.

    CAS  Google Scholar 

  27. Phor L, Kumar V. Structural, magnetic and dielectric properties of lanthanum substituted Mn0.5Zn0.5Fe2O4. Ceram Int 2019, 45: 22972–22980.

    CAS  Google Scholar 

  28. Lakhani VK, Pathak TK, Vasoya NH, et al. Structural parameters and X-ray Debye temperature determination study on copper-ferrite-aluminates. Solid State Sci 2011, 13: 539–547.

    CAS  Google Scholar 

  29. Phor L, Kumar V. Structural, thermomagnetic, and dielectric properties of Mn0.5Zn0.5GdxFe2−xO4 (x = 0, 0.025, 0.050, 0.075, and 0.1). J Adv Ceram 2020, 9: 243–254.

    CAS  Google Scholar 

  30. Waldron RD. Infrared spectra of ferrites. Phys Rev 1955, 99: 1727.

    CAS  Google Scholar 

  31. Chhantbar, MC, Trivedi UN, Tanna PV, et al. Infrared spectral studies of Zn-substituted CuFeCrO4 spinel ferrite system. Indian J Phys 2004, 78A: 321–326.

    CAS  Google Scholar 

  32. Zaki HM, Dawoud HA. Far-infrared spectra for copper-zinc mixed ferrites. Phys B: Condens Matter 2010, 405: 4476–4479.

    CAS  Google Scholar 

  33. Modi KB, Trivedi UN, Sharma PU, et al. Study of elastic properties of fine particle-copper zinc ferrites through infrared spectroscopy. Indian J Pure Ap Phy 2006, 44: 165–168.

    CAS  Google Scholar 

  34. Chahal S, Rani N, Kumar A, et al. UV-irradiated photocatalytic performance of yttrium doped ceria for hazardous Rose Bengal dye. Appl Surf Sci 2019, 493: 87–93.

    CAS  Google Scholar 

  35. Priyadharsini P, Pradeep A, Rao PS, et al. Structural, spectroscopic and magnetic study of nanocrystalline Ni-Zn ferrites. Mater Chem Phys 2009, 116: 207–213.

    CAS  Google Scholar 

  36. Phor L, Kumar V. Self-cooling device based on thermomagnetic effect of MnxZn1−xFe2O4 (x= 0.3, 0.4, 0.5, 0.6, 0.7)/ferrofluid. J Mater Sci: Mater Electron 2019, 30: 9322–9333.

    CAS  Google Scholar 

  37. Tholkappiyan R, Vishista K. Combustion synthesis of Mg-Er ferrite nanoparticles: Cation distribution and structural, optical, and magnetic properties. Mater Sci Semicond Process 2015, 40: 631–642.

    CAS  Google Scholar 

  38. Kumari N, Kumar V, Khasa S, et al. Chemical synthesis and magnetic investigations on Cr3+ substituted Zn-ferrite superparamagnetic nano-particles. Ceram Int 2015, 41: 1907–1911.

    CAS  Google Scholar 

  39. Mazen SA, Mansour SF, Zaki HM. Some physical and magnetic properties of Mg-Zn ferrite. Cryst Res Technol 2003, 38: 471–478.

    CAS  Google Scholar 

  40. Shinde TJ, Gadkari AB, Vasambekar PN. Magnetic properties and cation distribution study of nanocrystalline Ni-Zn ferrites. J Magn Magn Mater 2013, 333: 152–155.

    CAS  Google Scholar 

  41. Stoner EC, Wohlfarth EP. A mechanism of magnetic hystersis in hetrogeneous alloys. Philos T R Soc A 240, 1948, 240: 599–642.

    Google Scholar 

  42. Bammannavar BK, Nair LR, Pujar RB, Chougule BK. Preparation, characterization and physical properties of Mg-Zn ferrites. Indian J Eng Mater Sci 2007, 14: 381–385.

    CAS  Google Scholar 

  43. Kumar V, Rana A, Yadav MS, et al. Size-induced effect on nano-crystalline CoFe2O4. J Magn Magn Mater 2008, 320: 1729–1734.

    CAS  Google Scholar 

  44. Thota S, Kashyap SC, Sharma SK, et al. Micro Raman, Mossbauer and magnetic studies of manganese substituted zinc ferrite nanoparticles: Role of Mn. J Phys Chem Solids 2016, 91: 136–144.

    CAS  Google Scholar 

  45. Montiel H, Alvarez G, Gutiérrez M, et al. Microwave absorption in Ni-Zn ferrites through the Curie transition. J Alloys Compd 2004, 369: 141–143.

    CAS  Google Scholar 

  46. Chu P, Mills DL, Arias R. Exchange/dipole collective spin-wave modes of ferromagnetic nanosphere arrays. Phys Rev B 2006, 73: 094405.

    Google Scholar 

  47. Schlömann E. Ferromagnetic resonance in polycrystalline ferrites with large anisotropy—I. J Phys Chem Solids 1958, 6: 257–266.

    Google Scholar 

  48. Schlömann E, Zeender JR. Ferromagnetic resonance in polycrystalline nickel ferrite aluminate. J Appl Phys 1958, 29: 341–343.

    Google Scholar 

  49. Srivastava C, Patni M. Ferromagnetic relaxation processes in polycrystalline magnetic insulators. J Magn Reson 1969 1974, 15: 359–366.

    CAS  Google Scholar 

  50. Yamashita T, Hayes P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl Surf Sci 2008, 254: 2441–2449.

    CAS  Google Scholar 

  51. Yan ZK, Gao JM, Li Y, et al. Hydrothermal synthesis and structure evolution of metal-doped magnesium ferrite from saprolite laterite. RSC Adv 2015, 5: 92778–92787.

    CAS  Google Scholar 

  52. Liu J, Zeng M, Yu RH. Surfactant-free synthesis of octahedral ZnO/ZnFe2O4 heterostructure with ultrahigh and selective adsorption capacity of malachite green. Sci Rep 2016, 6: 25074.

    CAS  Google Scholar 

  53. Guijarro N, Bornoz P, Prévot M, et al. Evaluating spinel ferrites MFe2O4 (M = Cu, Mg, Zn) as photoanodes for solar water oxidation: Prospects and limitations. Sustainable Energy Fuels 2018, 2: 103–117.

    CAS  Google Scholar 

  54. Dom R, Chary AS, Subasri R, et al. Solar hydrogen generation from spinel ZnFe2O4 photocatalyst: Effect of synthesis methods. Int J Energy Res 2015, 39: 1378–1390.

    CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Thapar Institute of Engineering & Technology for providing a vibrating sample magnetometer facility.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lakshita Phor or Vinod Kumar.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Phor, L., Chahal, S. & Kumar, V. Zn2+ substituted superparamagnetic MgFe2O4 spinel-ferrites: Investigations on structural and spin-interactions. J Adv Ceram 9, 576–587 (2020). https://doi.org/10.1007/s40145-020-0396-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40145-020-0396-3

Keywords

  • nanoparticles (NPs)
  • nanospinel ferrites
  • structural properties
  • magnetism
  • coprecipitation method