Singh SB, Srinivas C, Tirupanyam BV, et al. Structural, thermal and magnetic studies of MgxZn1−xFe2O4 nanoferrites: Study of exchange interactions on magnetic anisotropy. Ceram Int 2016, 42: 19179–19186.
CAS
Google Scholar
Srinivas C, Tirupanyam BV, Meena SS, et al. Structural and magnetic characterization of co-precipitated NixZn1−xFe2O4 ferrite nanoparticles. J Magn Magn Mater 2016, 407: 135–141.
CAS
Google Scholar
Rahman S, Nadeem K, Anis-Ur-rehman M, et al. Structural and magnetic properties of ZnMg-ferrite nanoparticles prepared using the co-precipitation method. Ceram Int 2013, 39: 5235–5239.
CAS
Google Scholar
Ghatak S, Sinha M, Meikap AK, et al. Electrical transport behavior of nonstoichiometric magnesium-zinc ferrite. Mater Res Bull 2010, 45: 954–960.
CAS
Google Scholar
Niaz Akhtar M, Yahya N, Sattar A, et al. Investigations of structural and magnetic properties of nanostructured Ni0.5+xZn0.5−xFe2O4 Magnetic feeders for CSEM application. Int J Appl Ceram Technol 2015, 12: 625–637.
CAS
Google Scholar
Chahal S, Gaba S, Kumar A, et al. Effect of Mg2+ substitution on structural and magnetic properties of nano zinc ferrite. AIP Conf Proc 2018, 2006: 030014.
Shultz MD, Calvin S, Fatouros PP, et al. Enhanced ferrite nanoparticles as MRI contrast agents. J Magn Magn Mater 2007, 311: 464–468.
CAS
Google Scholar
Šepelák V, Bergmann I, Menzel D, et al. Magnetization enhancement in nanosized MgFe2O4 prepared by mechanosynthesis. J Magn Magn Mater 2007, 316: e764–e767.
Ghosh R, Pradhan L, Devi YP, et al. Induction heating studies of Fe3O4 magnetic nanoparticles capped with oleic acid and polyethylene glycol for hyperthermia. J Mater Chem 2011, 21: 13388.
CAS
Google Scholar
Jadhav NV, Prasad AI, Kumar A, et al. Synthesis of oleic acid functionalized Fe3O4 magnetic nanoparticles and studying their interaction with tumor cells for potential hyperthermia applications. Colloids Surfaces B: Biointerfaces 2013, 108: 158–168.
CAS
Google Scholar
Masina P, Moyo T, Abdallah HMI. Synthesis, structural and magnetic properties of ZnxMg1−xFe2O4 nanoferrites. J Magn Magn Mater 2015, 381: 41–49.
CAS
Google Scholar
Liu HY, Li AM, Ding XX, et al. Magnetic induction heating properties of Mg1−xZnxFe2O4 ferrites synthesized by co-precipitation method. Solid State Sci 2019, 93: 101–108.
CAS
Google Scholar
Reyes-Rodríguez PY, Cortés-Hernández DA, Escobedo-Bocardo JC, et al. Structural and magnetic properties of Mg-Zn ferrites (Mg1−xZnxFe2O4) prepared by sol-gel method. J Magn Magn Mater 2017, 427: 268–271.
Google Scholar
Kassabova-Zhetcheva V, Pavlova L, Samuneva B, et al. Characterization of superparamagnetic MgxZn1−xFe2O4 powders. Open Chem 2007, 5: 107–117.
CAS
Google Scholar
Khot SS, Shinde NS, Ladgaonkar BP, et al. Magnetic and structural properties of magnesium zinc ferrites synthesized at different temperature. Adv Appl Sci Res 2011, 2: 460–471.
CAS
Google Scholar
Rahman S, Nadeem K, Anis-Ur-rehman M, et al. Structural and magnetic properties of ZnMg-ferrite nanoparticles prepared using the co-precipitation method. Ceram Int 2013, 39: 5235–5239.
CAS
Google Scholar
Choodamani C, Nagabhushana GP, Ashoka S, et al. Structural and magnetic studies of Mg(1−x)ZnxFe2O4 nanoparticles prepared by a solution combustion method. J Alloys Compd 2013, 578: 103–109.
CAS
Google Scholar
Phor L, Kumar V. Self-cooling by ferrofluid in magnetic field. SN Appl Sci 2019, 1: 1696.
CAS
Google Scholar
Mohammed KA, Al-Rawas AD, Gismelseed AM, et al. Infrared and structural studies of Mg1−xZnxFe2O4 ferrites. Physica B 2012, 407: 795–804.
CAS
Google Scholar
Kumari N, Kumar V, Singh SK. Effect of Cr3+ substitution on properties of nano-ZnFe2O4. J Alloys Compd 2015, 622: 628–634.
CAS
Google Scholar
Gul IH, Abbasi AZ, Amin F, et al. Structural, magnetic and electrical properties of Co1−xZnxFe2O4 synthesized by co-precipitation method. J Magn Magn Mater 2007, 311: 494–499.
CAS
Google Scholar
Globus A, Pascard H, Cagan V. Distance between magnetic ions and fundamental properties in ferrites. J Phys Colloques 1977, 38: C1-163–C1-168.
Mazen SA, Abdallah MH, Sabrah BA, et al. The effect of titanium on some physical properties of CuFe2O4. Phys Stat Sol (a) 1992, 134: 263–271.
CAS
Google Scholar
Zaki HM, Al-Heniti SH, Elmosalami TA. Structural, magnetic and dielectric studies of copper substituted nano-crystalline spinel magnesium zinc ferrite. J Alloys Compd 2015, 633: 104–114.
CAS
Google Scholar
Thakur P, Sharma R, Kumar M, et al. Superparamagnetic La doped Mn-Zn nano ferrites: Dependence on dopant content and crystallite size. Mater Res Express 2016, 3: 075001.
Levine BF. D-electron effects on bond susceptibilities and ionicities. Phys Rev B 1973, 7: 2591.
CAS
Google Scholar
Phor L, Kumar V. Structural, magnetic and dielectric properties of lanthanum substituted Mn0.5Zn0.5Fe2O4. Ceram Int 2019, 45: 22972–22980.
CAS
Google Scholar
Lakhani VK, Pathak TK, Vasoya NH, et al. Structural parameters and X-ray Debye temperature determination study on copper-ferrite-aluminates. Solid State Sci 2011, 13: 539–547.
CAS
Google Scholar
Phor L, Kumar V. Structural, thermomagnetic, and dielectric properties of Mn0.5Zn0.5GdxFe2−xO4 (x = 0, 0.025, 0.050, 0.075, and 0.1). J Adv Ceram 2020, 9: 243–254.
CAS
Google Scholar
Waldron RD. Infrared spectra of ferrites. Phys Rev 1955, 99: 1727.
CAS
Google Scholar
Chhantbar, MC, Trivedi UN, Tanna PV, et al. Infrared spectral studies of Zn-substituted CuFeCrO4 spinel ferrite system. Indian J Phys 2004, 78A: 321–326.
CAS
Google Scholar
Zaki HM, Dawoud HA. Far-infrared spectra for copper-zinc mixed ferrites. Phys B: Condens Matter 2010, 405: 4476–4479.
CAS
Google Scholar
Modi KB, Trivedi UN, Sharma PU, et al. Study of elastic properties of fine particle-copper zinc ferrites through infrared spectroscopy. Indian J Pure Ap Phy 2006, 44: 165–168.
CAS
Google Scholar
Chahal S, Rani N, Kumar A, et al. UV-irradiated photocatalytic performance of yttrium doped ceria for hazardous Rose Bengal dye. Appl Surf Sci 2019, 493: 87–93.
CAS
Google Scholar
Priyadharsini P, Pradeep A, Rao PS, et al. Structural, spectroscopic and magnetic study of nanocrystalline Ni-Zn ferrites. Mater Chem Phys 2009, 116: 207–213.
CAS
Google Scholar
Phor L, Kumar V. Self-cooling device based on thermomagnetic effect of MnxZn1−xFe2O4 (x= 0.3, 0.4, 0.5, 0.6, 0.7)/ferrofluid. J Mater Sci: Mater Electron 2019, 30: 9322–9333.
CAS
Google Scholar
Tholkappiyan R, Vishista K. Combustion synthesis of Mg-Er ferrite nanoparticles: Cation distribution and structural, optical, and magnetic properties. Mater Sci Semicond Process 2015, 40: 631–642.
CAS
Google Scholar
Kumari N, Kumar V, Khasa S, et al. Chemical synthesis and magnetic investigations on Cr3+ substituted Zn-ferrite superparamagnetic nano-particles. Ceram Int 2015, 41: 1907–1911.
CAS
Google Scholar
Mazen SA, Mansour SF, Zaki HM. Some physical and magnetic properties of Mg-Zn ferrite. Cryst Res Technol 2003, 38: 471–478.
CAS
Google Scholar
Shinde TJ, Gadkari AB, Vasambekar PN. Magnetic properties and cation distribution study of nanocrystalline Ni-Zn ferrites. J Magn Magn Mater 2013, 333: 152–155.
CAS
Google Scholar
Stoner EC, Wohlfarth EP. A mechanism of magnetic hystersis in hetrogeneous alloys. Philos T R Soc A 240, 1948, 240: 599–642.
Google Scholar
Bammannavar BK, Nair LR, Pujar RB, Chougule BK. Preparation, characterization and physical properties of Mg-Zn ferrites. Indian J Eng Mater Sci 2007, 14: 381–385.
CAS
Google Scholar
Kumar V, Rana A, Yadav MS, et al. Size-induced effect on nano-crystalline CoFe2O4. J Magn Magn Mater 2008, 320: 1729–1734.
CAS
Google Scholar
Thota S, Kashyap SC, Sharma SK, et al. Micro Raman, Mossbauer and magnetic studies of manganese substituted zinc ferrite nanoparticles: Role of Mn. J Phys Chem Solids 2016, 91: 136–144.
CAS
Google Scholar
Montiel H, Alvarez G, Gutiérrez M, et al. Microwave absorption in Ni-Zn ferrites through the Curie transition. J Alloys Compd 2004, 369: 141–143.
CAS
Google Scholar
Chu P, Mills DL, Arias R. Exchange/dipole collective spin-wave modes of ferromagnetic nanosphere arrays. Phys Rev B 2006, 73: 094405.
Google Scholar
Schlömann E. Ferromagnetic resonance in polycrystalline ferrites with large anisotropy—I. J Phys Chem Solids 1958, 6: 257–266.
Google Scholar
Schlömann E, Zeender JR. Ferromagnetic resonance in polycrystalline nickel ferrite aluminate. J Appl Phys 1958, 29: 341–343.
Google Scholar
Srivastava C, Patni M. Ferromagnetic relaxation processes in polycrystalline magnetic insulators. J Magn Reson 1969 1974, 15: 359–366.
CAS
Google Scholar
Yamashita T, Hayes P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl Surf Sci 2008, 254: 2441–2449.
CAS
Google Scholar
Yan ZK, Gao JM, Li Y, et al. Hydrothermal synthesis and structure evolution of metal-doped magnesium ferrite from saprolite laterite. RSC Adv 2015, 5: 92778–92787.
CAS
Google Scholar
Liu J, Zeng M, Yu RH. Surfactant-free synthesis of octahedral ZnO/ZnFe2O4 heterostructure with ultrahigh and selective adsorption capacity of malachite green. Sci Rep 2016, 6: 25074.
CAS
Google Scholar
Guijarro N, Bornoz P, Prévot M, et al. Evaluating spinel ferrites MFe2O4 (M = Cu, Mg, Zn) as photoanodes for solar water oxidation: Prospects and limitations. Sustainable Energy Fuels 2018, 2: 103–117.
CAS
Google Scholar
Dom R, Chary AS, Subasri R, et al. Solar hydrogen generation from spinel ZnFe2O4 photocatalyst: Effect of synthesis methods. Int J Energy Res 2015, 39: 1378–1390.
CAS
Google Scholar