Nanowires-assembled WO3 nanomesh for fast detection of ppb-level NO2 at low temperature

An Erratum to this article was published on 04 March 2020

This article has been updated


Hierarchical WO3 nanomesh, assembled from single-crystalline WO3 nanowires, is prepared via a hydrothermal method using thiourea (Tu) as the morphology-controlling agent. Formation of the hierarchical architecture comprising of WO3 nanowires takes place via Ostwald ripening mechanism with the growth orientation. The sensor based on WO3 nanomesh has good electrical conductivity and is therefore suitable as NO2 sensing material. The WO3 nanomesh sensor exhibited high response, short response and recovery time, and excellent selectivity towards ppb-level NO2 at low temperature of 160 ℃. The superior gas performance of the sensor was attributed to the high-purity hexagonal WO3 with high specific surface area, which gives rise to enhanced surface adsorption sites for gas adsorption. The electron depletion theory was used for explaining the NO2-sensing mechanism by the gas adsorption/desorption and charge transfer happened on the surface of WO3 nanomesh.

Change history

  • 04 March 2020

    Figure 7 in the original version of this article was unfortunately wrong on page 23

  • 04 March 2020

    Figure 7 in the original version of this article was unfortunately wrong on page 23


  1. [1]

    Afzal A, Cioffi N, Sabbatini L, et al. NOx sensors based on semiconducting metal oxide nanostructures: Progress and perspectives. Sensor Actuat B: Chem 2012, 171: 25–42.

    Google Scholar 

  2. [2]

    Fine GF, Cavanagh LM, Afonja A, et al. Metal oxide semiconductor gas sensors in environmental monitoring. Sensors 2010, 10: 5469–5502.

    CAS  Google Scholar 

  3. [3]

    Sukunta J, Wisitsoraat A, Tuantranont A, et al. WO3 nanotubes–SnO2 nanoparticles heterointerfaces for ultrasensitive and selective NO2 detections. Appl Surf Sci 2018, 458: 319–332.

    CAS  Google Scholar 

  4. [4]

    Wang ZY, Zhao C, Han T Y, et al. High-performance reduced graphene oxide-based room-temperature NO2 sensors: A combined surface modification of SnO2 nanoparticles and nitrogen doping approach. Sensor Actuat B: Chem 2017, 242: 269–279.

    CAS  Google Scholar 

  5. [5]

    Minh Nguyet QT, van Duy N, Phuong NT, et al. Superior enhancement of NO2 gas response using n-p-n transition of carbon nanotubes/SnO2 nanowires heterojunctions. Sensor Actuat B: Chem 2017, 238: 1120–1127.

    Google Scholar 

  6. [6]

    Geng X, Lu PF, Zhang C, et al. Room-temperature NO2 gas sensors based on rGO@ZnO1-x composites: Experiments and molecular dynamics simulation. Sensor Actuat B: Chem 2019, 282: 690–702.

    CAS  Google Scholar 

  7. [7]

    Chen XX, Shen YB, Zhou PF, et al. NO2 sensing properties of one-pot-synthesized ZnO nanowires with Pd functionalization. Sensor Actuat B: Chem 2019, 280: 151–161.

    CAS  Google Scholar 

  8. [8]

    Zhao SK, Shen YB, Zhou PF, et al. Design of Au@WO3 core–shell structured nanospheres for ppb-level NO2 sensing. Sensor Actuat B: Chem 2019, 282: 917–926.

    CAS  Google Scholar 

  9. [9]

    Zhang Z Y, Haq M, Wen Z, et al. Ultrasensitive ppb-level NO2 gas sensor based on WO3 hollow nanosphers doped with Fe. Appl Surf Sci 2018, 434: 891–897.

    CAS  Google Scholar 

  10. [10]

    Wang LL, Gao J, Wu BF, et al. Designed synthesis of In2O3 Beads@TiO2–In2O3 composite nanofibers for high performance NO2 sensor at room temperature. ACS Appl Mater Interfaces 2015, 7: 27152–27159.

    CAS  Google Scholar 

  11. [11]

    González-Borrero PP, Sato F, Medina AN, et al. Optical band-gap determination of nanostructured WO3 film. Appl Phys Lett 2010, 96: 061909.

    Google Scholar 

  12. [12]

    Zheng HD, Ou JZ, Strano MS, et al. Nanostructured tungsten oxide-properties, synthesis, and applications. Adv Funct Mater 2011, 21: 2175–2196.

    CAS  Google Scholar 

  13. [13]

    Korotcenkov G, Cho BK. Metal oxide composites in conductometric gas sensors: Achievements and challenges. Sensor Actuat B: Chem 2017, 244: 182–210.

    CAS  Google Scholar 

  14. [14]

    Kim DH, Jung J W, Choi SJ, et al. Pt nanoparticles functionalized tungsten oxynitride hybrid chemiresistor: Low-temperature NO2 sensing. Sensor Actuat B: Chem 2018, 273: 1269–1277.

    CAS  Google Scholar 

  15. [15]

    Isaac NA, Valenti M, Schmidt-Ott A, et al. Characterization of tungsten oxide thin films produced by spark ablation for NO2 gas sensing. ACS Appl Mater Interfaces 2016, 8: 3933–3939.

    CAS  Google Scholar 

  16. [16]

    Kim JS, Yoon JW, Hong YJ, et al. Highly sensitive and selective detection of ppb-level NO2 using multi-shelled WO3 yolk-shell spheres. Sensor Actuat B: Chem 2016, 229: 561–569.

    CAS  Google Scholar 

  17. [17]

    Wang YL, Cui XB, Yang Q Y, et al. Preparation of Ag-loaded mesoporous WO3 and its enhanced NO2 sensing performance. Sensor Actuat B: Chem 2016, 225: 544–552.

    CAS  Google Scholar 

  18. [18]

    Choi SJ, Lee I, Jang BH, et al. Selective diagnosis of diabetes using Pt-functionalized WO3 Hemitube networks as a sensing layer of acetone in exhaled breath. Anal Chem 2013, 85: 1792–1796.

    CAS  Google Scholar 

  19. [19]

    Xiong Y, Tang ZL, Wang Y, et al. Gas sensing capabilities of TiO2 porous nanoceramics prepared through premature sintering. J Adv Ceram 2015, 4: 152–157.

    CAS  Google Scholar 

  20. [20]

    Zhang HW, Wang Y Y, Zhu XG, et al. Bilayer Au nanoparticle-decorated WO3 porous thin films: On-chip fabrication and enhanced NO2 gas sensing performances with high selectivity. Sensor Actuat B: Chem 2019, 280: 192–200.

    CAS  Google Scholar 

  21. [21]

    Miller DR, Akbar SA, Morris PA. Nanoscale metal oxide-based heterojunctions for gas sensing: A review. Sensor Actuat B: Chem 2014, 204: 250–272.

    CAS  Google Scholar 

  22. [22]

    Jia QQ, Ji HM, Wang DH, et al. Exposed facets induced enhanced acetone selective sensing property of nanostructured tungsten oxide. J Mater Chem A 2014, 2: 13602.

    CAS  Google Scholar 

  23. [23]

    Shendage SS, Patil VL, Vanalakar SA, et al. Sensitive and selective NO2 gas sensor based on WO3 nanoplates. Sensor Actuat B: Chem 2017, 240: 426–433.

    CAS  Google Scholar 

  24. [24]

    Xiao BX, Zhao Q, Xiao CH, et al. Low-temperature solvothermal synthesis of hierarchical flower-like WO3 nano-structures and their sensing properties for H2S. CrystEng-Comm 2015, 17: 5710–5716.

    CAS  Google Scholar 

  25. [25]

    Jaroenapibal P, Boonma P, Saksilaporn N, et al. Improved NO2 sensing performance of electrospun WO3 nanofibers with silver doping. Sensor Actuat B: Chem 2018, 255: 1831–1840.

    CAS  Google Scholar 

  26. [26]

    Wu QF, Huang J, Li H. Deposition of porous nano-WO3 coatings with tunable grain shapes by liquid plasma spraying for gas-sensing applications. Mater Lett 2015, 141: 100–103.

    CAS  Google Scholar 

  27. [27]

    Lee K, Baek DH, Na H, et al. Simple fabrication method of silicon/tungsten oxide nanowires heterojunction for NO2 gas sensors. Sensor Actuat B: Chem 2018, 265: 522–528.

    CAS  Google Scholar 

  28. [28]

    Zhang YJ, Zeng W, Li YQ. New insight into gas sensing performance of nanorods assembled and nanosheets assembled hierarchical WO3•H2O structures. Mater Lett 2019, 235: 49–52.

    CAS  Google Scholar 

  29. [29]

    Zhai CB, Zhu MM, Jiang LN, et al. Fast triethylamine gas sensing response properties of nanosheets assembled WO3 hollow microspheres. Appl Surf Sci 2019, 463: 1078–1084.

    CAS  Google Scholar 

  30. [30]

    Lu J, Xu C, Cheng L, et al. Acetone sensor based on WO3 nanocrystallines with oxygen defects for low concentration detection. Mater Sci Semicond Process 2019, 101: 214–222.

    CAS  Google Scholar 

  31. [31]

    Zhang YX, Zeng W, Li YQ. NO2 and H2 sensing properties for urchin-like hexagonal WO3 based on experimental and first-principle investigations. Ceram Int 2019, 45: 6043–6050.

    CAS  Google Scholar 

  32. [32]

    Xue DP, Wang Y, Cao JL, et al. Improving methane gas sensing performance of flower-like SnO2 decorated by WO3 nanoplates. Talanta 2019, 199: 603–611.

    CAS  Google Scholar 

  33. [33]

    Yin L, Chen DL, Hu MX, et al. Microwave-assisted growth of In2O3 nanoparticles on WO3 nanoplates to improve H2S-sensing performance. J Mater Chem A 2014, 2: 18867–18874.

    CAS  Google Scholar 

  34. [34]

    Nayak AK, Ghosh R, Santra S, et al. Hierarchical nanostructured WO3–SnO2 for selective sensing of volatile organic compounds. Nanoscale 2015, 7: 12460–12473.

    CAS  Google Scholar 

  35. [35]

    Lee JS, Kwon OS, Shin DH, et al. WO3 nanonodule-decorated hybrid carbon nanofibers for NO2 gas sensor application. J Mater Chem A 2013, 1: 9099.

    CAS  Google Scholar 

  36. [36]

    Shen YB, Wang W, Chen XX, et al. Nitrogen dioxide sensing using tungsten oxide microspheres with hierarchical nanorod-assembled architectures by a complexing surfactant-mediated hydrothermal route. J Mater Chem A 2016, 4: 1345–1352.

    CAS  Google Scholar 

  37. [37]

    Daniel MF, Desbat B, Lassegues JC, et al. Infrared and Raman study of WO3 tungsten trioxides and WO3, xH2O tungsten trioxide tydrates. J Solid State Chem 1987, 67: 235–247.

    CAS  Google Scholar 

  38. [38]

    Zheng Y, Chen G, Yu Y G, et al. Urea-assisted synthesis of ultra-thin hexagonal tungsten trioxide photocatalyst sheets. J Mater Sci 2015, 50: 8111–8119.

    CAS  Google Scholar 

  39. [39]

    Shi JJ, Cheng ZX, Gao LP, et al. Facile synthesis of reduced graphene oxide/hexagonal WO3 nanosheets composites with enhanced H2S sensing properties. Sensor Actuat B: Chem 2016, 230: 736–745.

    CAS  Google Scholar 

  40. [40]

    Pan CT, Su CY, Luo YC. Study on comparing WO3 and W18O49 gas sensing abilities under NO2 environment. Microsyst Technol 2017, 23: 2113–2123.

    CAS  Google Scholar 

  41. [41]

    Mane AT, Kulkarni SB, Navale ST, et al. NO2 sensing properties of nanostructured tungsten oxide thin films. Ceram Int 2014, 40: 16495–16502.

    CAS  Google Scholar 

  42. [42]

    Behera B, Chandra S. Synthesis of WO3 nanorods by thermal oxidation technique for NO2 gas sensing application. Mater Sci Semicond Process 2018, 86: 79–84.

    CAS  Google Scholar 

  43. [43]

    An S, Park S, Ko H, et al. Fabrication of WO3 nanotube sensors and their gas sensing properties. Ceram Int 2014, 40: 1423–1429.

    CAS  Google Scholar 

  44. [44]

    Horprathum M, Limwichean K, Wisitsoraat A, et al. NO2 sensing properties of WO3 nanorods prepared by glancing angle DC magnetron sputtering. Sensor Actuat B: Chem 2013, 176: 685–691.

    CAS  Google Scholar 

  45. [45]

    Hu J, Liang YF, Sun YJ, et al. Highly sensitive NO2 detection on ppb level by devices based on Pd-loaded In2O3 hierarchical microstructures. Sensor Actuat B: Chem 2017, 252: 116–126.

    CAS  Google Scholar 

Download references


The National Key Basic Research Program of China (973 Program) (No. 2013CB934301) supported this work.

Author information



Corresponding author

Correspondence to Zilong Tang.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Ren, X., Li, Y. et al. Nanowires-assembled WO3 nanomesh for fast detection of ppb-level NO2 at low temperature. J Adv Ceram 9, 17–26 (2020).

Download citation


  • WO3 nanomesh
  • controlling agent
  • NO2 sensing
  • charge transfer