Hou DL, Zhou ZZ, Ye XJ, et al. Multiferroicity in ion-implanted Fe:BaTiO3 film. Phys Proc 2012, 32: 498–502.
Article
Google Scholar
Liu R Z, Zhao YZ, Huang RX, et al. Multiferroic ferrite/perovskite oxide core/shell nanostructures. J Mater Chem 2010, 20: 10665–10670.
Article
Google Scholar
Kozielski L, Clemens F. Multiferroics application: magnetic controlled piezoelectric transformer. Process Appl Ceram 2012, 6: 15–20.
Article
Google Scholar
Srinivas A, Raja MM, Sivaprahasam D, et al. Enhanced ferroelectricity and magnetoelectricity in 0.75BaTiO3–0.25BaFe12O19 by spark plasma sintering. Process Appl Ceram 2013, 7: 29–35.
Article
Google Scholar
Ristanović Z, Kalezić-Glišović A, Mitrović N, et al. The influence of mechanical activation and thermal treatment on magnetic properties of the BaTiO3–FexOy powder mixture. Process Appl Ceram 2015, 47: 3–14.
Google Scholar
Xu B, Yin KB, Lin J, et al. Room-temperature ferromagnetism and ferroelectricity in Fe-doped BaTiO3. Phys Rev B 2009, 79: 134109.
Article
Google Scholar
Surowiak Z, Bochenek D. Multiferroic materials for sensors, transducers and memory devices. Arch Acoust 2008, 33: 243–260.
Google Scholar
Gao XS, Xue JM, Wang J, et al. Sequential combination of constituent oxides in the synthesis of Pb(Fe1/2Nb1/2)O3 by mechanical activation. J Am Ceram Soc 2002, 85: 565–572.
Article
Google Scholar
Kim JS, Cheon CI, Jang PW, et al. Ferroelectric and ferromagnetic properties of 0.2BiFeO3-0.2RFeO3-0.6ATiO3 (R=Pr,Nd and A=Ba,Pb) and 0.8BiFeO3-0.2 BaTiO3. J Eur Ceram Soc 2004, 24: 1551–1555.
Article
Google Scholar
Wang J, Neaton JB, Zheng H, et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 2003, 299: 1719–1722.
Article
Google Scholar
Hill NA, Filippetti A. Why are there any magnetic ferroelectrics. J Magn Magn Mater 2002, 242–245: 976–979.
Article
Google Scholar
Roy S, Majumder SB. Recent advances in multiferroic thin films and composites. J Alloys Compd 2012, 538: 153–159.
Article
Google Scholar
Wang Y, Hu JM, Lin YH, et al. Multiferroic magnetoelectric composite nanostructures. NPG Asia Mater 2010, 2: 61–68.
Article
Google Scholar
Koo YS, Song KM, Hur N, et al. Strain-induced magnetoelectric coupling in BaTiO3/Fe3O4 core/shell nanoparticles. Appl Phys Lett 2009, 94: 032903.
Article
Google Scholar
Chaudhuri A, Mandal K. Large magnetoelectric properties in CoFe2O4:BaTiO3 core/shell nanocomposites. J Magn Magn Mater 2015, 377: 441–445.
Article
Google Scholar
Zhou JP, Lv L, Liu Q, et al. Hydrothermal synthesis and properties of NiFe2O4@BaTiO3 composites with well-matched interface. Sci Technol Adv Mater 2012, 13: 045001.
Article
Google Scholar
Corral-Flores V, Bueno-Baques D, Ziolo RF. Synthesis and characterization of novel CoFe2O4–BaTiO3 multiferroic core-shell-type nanostructures. Acta Mater 2010, 58: 764–769.
Article
Google Scholar
Corral-Flores V, Bueno-Baques D, Carrillo-Flores D, et al. Enhanced magnetoelectric effect in core/shell particulate composites. J Appl Phys 2006, 99: 08J503.
Article
Google Scholar
Chaudhuri RG, Paria S. Core/shell nanoparticles: classes, properties, synthesis mechanisms,characterization, and applications. Chem Rev 2012, 112: 2373–2433.
Article
Google Scholar
Mančić D, Paunović V, Vijatović M, et al. Electrical characterization and impedance response of lanthanum doped barium titanate ceramics. Sci Sinter 2008, 40: 283–294.
Article
Google Scholar
Arlt G, Hennings D, With GD. Dielectric properties of fine-grained barium titanate ceramics. J Appl Phys 1985, 58: 1619–1625.
Article
Google Scholar
Mornet S, Elissalde C, Bidault O, et al. Ferroelectric-based nanocomposites: toward multifunctional materials. Chem Mater 2007, 19: 987–992.
Article
Google Scholar
Koo YS, Bonaedy T, Sung KD, et al. Magnetodielectric coupling in core/shell BaTiO3/γ-Fe2O3 nanoparticles. Appl Phys Lett 2007, 91: 212903.
Article
Google Scholar
Singh S, Kumar N, Jha A, et al. Study of magnetic, dielectric and magnetodielectric properties of BaTiO3/Fe3O4 core/shell nanocomposite. J Mater Sci: Mater El 2015, 26: 32–36.
Google Scholar
Buscaglia MT, Buscaglia V, Curecheriu L, et al. Fe2O3@BaTiO3 core/shell particles as reactive precursors for the preparation of multifunctional composites containing different magnetic phases. Chem Mater 2010, 22: 4740–4748.
Article
Google Scholar
Pavlović VP, Popović D, Krstić J, et al. Influence of mechanical activation on the structure of ultrafine BaTiO3 powders. J Alloys Compd 2009, 486: 633–639.
Article
Google Scholar
Frey MH, Payne DA. Grain-size effect on structure and phase transformations for barium titanate. Phys Rev B 1996, 54: 3158–3168.
Article
Google Scholar
Pavlović VP, Krstić J, Šćepanović MJ, et al. Structural investigation of mechanically activated nanocrystalline BaTiO3 powders. Ceram Int 2011, 37: 2513–2518.
Article
Google Scholar
De Faria DLA, Silva SV, de Oliveira MT. Raman microspectroscopy of some iron oxides and oxyhydroxides. J Raman Spectrosc 1997, 28: 873–878.
Article
Google Scholar
Kelm K, Mader W. The symmetry of ordered cubic γ-Fe2O3 investigated by TEM. J Chem Sci 2006, 61: 665–671.
Google Scholar
Malina O, Tuček J, Jakubec P, et al. Magnetic ground state of nanosized β-Fe2O3 and its remarkable electronic features. RSC Adv 2015, 5: 49719–49727.
Article
Google Scholar
Buscagila V, Buscagila MT. Core/shell heterostructures: from particles sznthesis to bulk dielectric, ferroelectric, and multiferroic composite materials. In Nanoscale Ferroelectrcs and Multiferroics. Alguero M, Gregg JM, Mitoseriu L, Eds. Wiley, 2016: 72–99.
Buscaglia MT, Viviani M, Zhao Z, et al. Synthesis of BaTiO3 core/shell particles and fabrication of dielectric ceramics with local graded structure. Chem Mater 2006, 18: 4002–4010.
Article
Google Scholar
Shebanova ON, Lazarov P. Raman spectroscopic study of magnetite (FeFe2O4): a new assignment for the vibrational spectrum. J Solid State Chem 2003, 174: 424–430.
Article
Google Scholar
Durán P, Gutierrez D, Tartaj J, et al. On the formation of an oxycarbonate intermediate phase in the synthesis of BaTiO3 from (Ba,Ti)polymeric organic precursors. J Eur Ceram Soc 2002, 22: 797–807.
Article
Google Scholar
Avakyants LP, Gorelik VS, Zlobina LI, et al. Raman scattering study of NaNO2-infiltrated opal photonic crystals. Inorg Mater 2006, 42: 635–640.
Article
Google Scholar
Cho WS, Hamada E. Synthesis of ultrafine BaTiO3 particles from polymeric precursor: their structure and surface property. J Alloys Compd 1998, 266: 118–122.
Article
Google Scholar
Naik R, Nazarko JJ, Flattery CS, et al. Temperature dependence of the Raman spectra of polycrystalline Ba1–xSixTiO3. Phys Rev B 2000, 61: 11367–11372.
Article
Google Scholar
Pavlovic VP, Nikolic MV, Pavlovic VB, et al. Raman responses in mechanically activated BaTiO3. J Am Ceram Soc 2014, 97: 601–608.
Article
Google Scholar
Chen MS, Shen ZX, Tang SH, et al. Stress effect on Raman spectra of Ce-doped BaTiO3 films. J Phys: Condens Matter 2000, 12: 7013–7023.
Google Scholar
Park YB, Ruglovsky JL, Atwater HA. Microstructure and properties of single crystal BaTiO3 thin films synthesized by ion implantation-induced layer transfer. Appl Phys Lett 2004, 85: 455.
Article
Google Scholar
Deka B, Ravin S, Perumal A, et al. Ferromagnetism and ferroelectricity in Fe doped BaTiO3. Physica B 2014, 448: 204–206.
Article
Google Scholar
Curecheriu L, Postolache P, Buscaglia MT, et al. Novel magnetoelectric ceramic composites by control of the interface reactions in Fe2O3@BaTiO3 core/shell structures. J Appl Phys 2014, 116: 084102.
Article
Google Scholar
Mahajan RP, Patankar KK, Kothale MB, et al. Magnetoelectric effect in cobalt ferrite–barium titanate composites and their electrical properties. Pramana-J Phys 2002, 58: 1115–1124.
Article
Google Scholar
Curecheriu L, Postolache P, Buscaglia V, et al. BaTiO3-ferrite composites with magnetocapacitance and hard/soft magnetic properties. Phase Transit 2013, 86: 670–680.
Article
Google Scholar