Skip to main content

Influence of rare earth ion substitutions on the structural, optical, transport, dielectric, and magnetic properties of superparamagnetic iron oxide nanoparticles


Superparamgnetic Fe3O4 and RE:Fe3O4 (RE = Dy, Nd, La) nanoparticles with an average crystallite size in the range of 15–24 nm, were synthesized by co-precipitation method. The samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), UV–Vis spectroscopy, LCR bridge, and two-probe technique. X-ray diffraction patterns of all the investigated samples reveal the typical phase of magnetite structure, with a small contribution of orthoferrite (NdFeO3) as a secondary phase in Nd:Fe3O4 sample. The saturation magnetization (Ms) of the samples has values in the range from 41.8 to 52.3 emu/g, and decreases with RE ion doping depending on the ionic radius. Negligible values of the coercivity Hc and remanence Mr, indicate the superparamagnetic nature of the investigated samples. The calculated values of indirect optical band gap of Fe3O4 and RE:Fe3O4 nanoparticles are in the range of 0.9–1.25 eV. The dielectric constant of the samples decreases, while their activation energy increases with the increasing of ionic radii of dopants.


  1. [1]

    Douglas FJ, MacLaren DA, Maclean N, et al. Gadolinium- doped magnetite nanoparticles from a single-source precursor. RSC Adv 2016, 6: 74500–74505.

    Article  Google Scholar 

  2. [2]

    Hans ML, Lowman AM. Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid St M 2002, 6: 319–327.

    Article  Google Scholar 

  3. [3]

    Chemla YR, Crossman HL, Poon Y, et al. Ultrasensitive magnetic biosensor for homogeneous immunoassay. P Natl Acad Sci USA 2000, 97: 14268–14272.

    Article  Google Scholar 

  4. [4]

    Lin S, Shen C, Lu D, et al. Synthesis of Pt nanoparticles anchored on graphene-encapsulated Fe3O4 magnetic nanospheres and their use as catalysts for methanol oxidation. Carbon 2013, 53: 112–119.

    Article  Google Scholar 

  5. [5]

    Fukushima T, Sekizawa K, Jin Y, et al. Effects of beta-adrenergic receptor activation on alveolar macrophage cytoplasmic motility. Am J Physiol-Lung C 1993, 265: L67–L72.

    Article  Google Scholar 

  6. [6]

    Sun S, Zeng H. Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 2002, 124: 8204–8205.

    Article  Google Scholar 

  7. [7]

    Gupta J, Prakash A, Jaiswal MK, et al. Superparamagnetic iron oxide-reduced graphene oxide nanohybrid-a vehicle for targeted drug delivery and hyperthermia treatment of cancer. J Magn Magn Mater 2018, 448: 332–338.

    Article  Google Scholar 

  8. [8]

    Prozorov T, Bazylinski DA, Mallapragada SK, et al. Novel magnetic nanomaterials inspired by magnetotactic bacteria: Topical review. Mat Sci Eng R 2013, 74: 133–172.

    Article  Google Scholar 

  9. [9]

    Dunlop DJ. Superparamagnetic and single-domain threshold sizes in magnetite. J Geophys Res 1973, 78: 1780–1793.

    Article  Google Scholar 

  10. [10]

    Butler RF, Banerjee SK. Theoretical single-domain grain size range in magnetite and titanomagnetite. J Geophys Res 1975, 80: 4049–4058.

    Article  Google Scholar 

  11. [11]

    Krishnan KM, Pakhomov AB, Bao Y, et al. Nanomagnetism and spin electronics: Materials, microstructure and novel properties. J Mater Sci 2006, 41: 793–815.

    Article  Google Scholar 

  12. [12]

    Yang L, Zhou Z, Liu H, et al. Europium-engineered iron oxide nanocubes with high T1 and T2 contrast abilities for MRI in living subjects. Nanoscale 2015, 7: 6843–6850.

    Article  Google Scholar 

  13. [13]

    Park JC, Yeo S, Kim M, et al. Synthesis and characterization of novel lanthanide-doped magnetite@Au core@shell nanoparticles. Mater Lett 2016, 181: 272–277.

    Article  Google Scholar 

  14. [14]

    Liu Y, Gao Y, Xu CJ. Using magnetic nanoparticles to manipulate biological objects. Chinese Phys B 2013, 22: 097503.

    Article  Google Scholar 

  15. [15]

    Ugelstad J, Berge A, Ellingsen T, et al. Preparation and application of new monosized polymer particles. Prog Polym Sci 1992, 17: 87–161.

    Article  Google Scholar 

  16. [16]

    Wahajuddin, Arora S. Superparamagnetic iron oxide nanoparticles: Magnetic nanoplatforms as drug carriers. Int J Nanomedicine 2012, 7: 3445–3471.

    Article  Google Scholar 

  17. [17]

    Bliem R, Pavelec J, Gamba O, et al. Adsorption and incorporation of transition metals at the magnetite Fe3O4(001) surface. Phys Rev B 2015, 92: 075440.

    Article  Google Scholar 

  18. [18]

    Prodi L, Rampazzo E, Rastrelli F, et al. Imaging agents based on lanthanide doped nanoparticles. Chem Soc Rev 2015, 44: 4922–4952.

    Article  Google Scholar 

  19. [19]

    Wang G, Peng Q, Li Y, et al. Lanthanide-doped nanocrystals: Synthesis, optical-magnetic properties, and applications. Acc Chem Res 2011, 44: 322–332.

    Article  Google Scholar 

  20. [20]

    Huan W, Cheng C, Yang Y, et al. A study on the magnetic and photoluminescence properties of Eun+ and Sm3+ doped Fe3O4 nanoparticles. J Nanosci Nanotechnol 2012, 12: 4621–4634.

    Article  Google Scholar 

  21. [21]

    Abdellatif MH, El-Komy GM, Azab AA, et al. Crystal field distortion of La3+ ion-doped Mn–Cr ferrite. J Magn Magn Mater 2018, 447: 15–20.

    Article  Google Scholar 

  22. [22]

    Rezlescu N, Rezlescu E, Pasnicu C, et al. Effects of the rare-earth ions on some properties of a nickel–zinc ferrite. J Phys: Condens Matter 1994, 6: 5707–5716.

    Google Scholar 

  23. [23]

    Rice KP, Russek SE, Geiss RH, et al. Temperature-dependent structure of Tb-doped magnetite nanoparticles. Appl Phys Lett 2015, 106: 062409.

    Article  Google Scholar 

  24. [24]

    Kittel C. Introduction to Solid State Physics, 7th edn. Wiley, 1995.

    Google Scholar 

  25. [25]

    Johansson B, Rosengren A. Generalized phase diagram for the rare-earth elements: Calculations and correlations of bulk properties. Phys Rev B 1975, 11: 2836–2857.

    Article  Google Scholar 

  26. [26]

    Peng J, Hojamberdiev M, Xu Y, et al. Hydrothermal synthesis and magnetic properties of gadolinium-doped CoFe2O4 nanoparticles. J Magn Magn Mater 2011, 323: 133–137.

    Article  Google Scholar 

  27. [27]

    Meng YY, Liu ZW, Dai HC, et al. Structure and magnetic properties of Mn(Zn)Fe2-xRExO4 ferrite nano-powders synthesized by co-precipitation and refluxing method. Powder Technol 2012, 229: 270–275.

    Article  Google Scholar 

  28. [28]

    Aghazadeh M, Karimzadeh I, Ganjali MR. Improvement of supercapacitive and superparamagnetic capabilities of iron oxide through electrochemically grown La3+ doped Fe3O4 nanoparticles. J Mater Sci: Mater El 2017, 28: 19061–19070.

    Google Scholar 

  29. [29]

    Zhou Z, Huang D, Bao J, et al. A synergistically enhanced T1–T2 dual-modal contrast agent. Adv Mater 2012, 24: 6223–6228.

    Article  Google Scholar 

  30. [30]

    Xiao N, Gu W, Wang H, et al. T1–T2 dual-modal MRI of brain gliomas using PEGylated Gd-doped iron oxide nanoparticles. J Colloid Interface Sci 2014, 417: 159–165.

    Article  Google Scholar 

  31. [31]

    Jain R, Luthra V, Gokhale S. Dysprosium doping induced shape and magnetic anisotropy of Fe3-xDyxO4 (x = 0.01–0.1) nanoparticles. J Magn Magn Mater 2016, 414: 111–115.

    Article  Google Scholar 

  32. [32]

    Drake P, Cho H-J, Shih P-S, et al. Gd-doped iron-oxide nanoparticles for tumour therapy via magnetic field hyperthermia. J Mater Chem 2007, 17: 4914–4918.

    Article  Google Scholar 

  33. [33]

    Zhang H, Malik V, Mallapragada S, et al. Synthesis and characterization of Gd-doped magnetite nanoparticles. J Magn Magn Mater 2017, 423: 386–394.

    Article  Google Scholar 

  34. [34]

    Huan W, Ji G, Cheng C, et al. Preparation, characterization of high-luminescent and magnetic Eu3+, Dy3+ doped superparamagnetic nano-Fe3O4. J Nanosci Nanotechnol 2015, 15: 1780–1788.

    Article  Google Scholar 

  35. [35]

    Mahdavi M, Ahmad MB, Haron MJ, et al. Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules 2013, 18: 7533–7548.

    Article  Google Scholar 

  36. [36]

    Jain R, Luthra V, Gokhale S. Probing influence of rare earth ions (Er3+, Dy3+ and Gd3+) on structural, magnetic and optical properties of magnetite nanoparticles. J Magn Magn Mater 2018, 456: 179–185.

    Article  Google Scholar 

  37. [37]

    Ahmed MA, Okasha N, Kershi RM. Influence of rare-earth ions on the structure and magnetic properties of barium W-type hexaferrite. J Magn Magn Mater 2008, 320: 1146–1150.

    Article  Google Scholar 

  38. [38]

    Ahmed MA, Okasha N, Kershi RM. Extraordinary role of rare-earth elements on the transport properties of barium W-type hexaferrite. Mater Chem Phys 2009, 113: 196–201.

    Article  Google Scholar 

  39. [39]

    Al-Asbahi SO, Kershi RM. The X-ray diffraction microstructure analysis of hexagonal ferrite powders doped with La rare earth ions. J Chem Crystallogr 2012, 42: 155–158.

    Article  Google Scholar 

  40. [40]

    Guo L, Shen X, Meng X, et al. Effect of Sm3+ ions doping on structure and magnetic properties of nanocrystalline NiFe2O4 fibers. J Alloys Compd 2010, 490: 301–306.

    Article  Google Scholar 

  41. [41]

    Gadkari AB, Shinde TJ, Vasambekar PN. Structural analysis of Sm3+ doped nanocrystalline Mg–Cd ferrites prepared by oxalate co-precipitation method. Mater Charact 2009, 60: 1328–1333.

    Article  Google Scholar 

  42. [42]

    Bercoff PG, Herme C, Jacobo SE. The influence of Nd–Co substitution on the magnetic properties of non-stoichiometric strontium hexaferrite nanoparticles. J Magn Magn Mater 2009, 321: 2245–2250.

    Article  Google Scholar 

  43. [43]

    Sato T. Formation and magnetic properties of ultrafine spinel ferrites. IEEE T Magn 1970, 6: 795–799.

    Article  Google Scholar 

  44. [44]

    Cornell RM, Schwertmann U. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses. John Wiley & Sons, 2003.

    Book  Google Scholar 

  45. [45]

    Behera SS, Patra JK, Pramanik K, et al. Characterization and evaluation of antibacterial activities of chemically synthesized iron oxide nanoparticles. World J Nano Sci Eng 2012, 2: 196–200.

    Article  Google Scholar 

  46. [46]

    Tauc J, Grigorovici R, Vancu A. Optical properties and electronic structure of amorphous germanium. Phys Status Solidi b 1966, 15: 627–637.

    Article  Google Scholar 

  47. [47]

    El Ghandoor H, Zidan HM, Khalil MMH, et al. Synthesis and some physical properties of magnetite (Fe3O4) nanoparticles. Int J Electrochem Sci 2012, 7: 5734–5745.

    Google Scholar 

  48. [48]

    Kulkarni SA, Sawadh PS, Palei PK, et al. Effect of synthesis route on the structural, optical and magnetic properties of Fe3O4 nanoparticles. Ceram Int 2014, 40: 1945–1949.

    Article  Google Scholar 

  49. [49]

    Gao Q, Chen F, Zhang J, et al. The study of novel Fe3O4@γ-Fe2O3 core/shell nanomaterials with improved properties. J Magn Magn Mater 2009, 321: 1052–1057.

    Article  Google Scholar 

  50. [50]

    Sarfraz AK, Hasanain SK. Size dependence of magnetic and optical properties of Co3O4 nanoparticles. Acta Phys Pol A 2014, 125: 139–144.

    Article  Google Scholar 

  51. [51]

    Mallick P, Dash BN. X-ray diffraction and UV–visible characterizations of α-Fe2O3 nanoparticles annealed at different temperature. Nanosci Nanotechnol 2013, 3: 130–134.

    Google Scholar 

  52. [52]

    Aghazadeh M, Ganjali MR. Samarium-doped Fe3O4 nanoparticles with improved magnetic and supercapacitive performance: A novel preparation strategy and characterization. J Mater Sci 2018, 53: 295–308.

    Article  Google Scholar 

  53. [53]

    Aghazadeh M, Ganjali MR. Evaluation of supercapacitive and magnetic properties of Fe3O4 nano-particles electrochemically doped with dysprosium cations: Development of a novel iron-based electrode. Ceram Int 2018, 44: 520–529.

    Article  Google Scholar 

  54. [54]

    Park JY, Patel D, Choi ES, et al. Evaluation of supercapacitive and magnetic properties of Fe3O4 nano-particles electrochemically doped with dysprosium cations: Development of a novel iron-based electrode. Colloid Surface A 2010, 367: 41–46.

    Article  Google Scholar 

  55. [55]

    Jolivet JP, Massart R, Fruchart JM. Synthèse et étude physicochimique de colloides magnétiques non surfactés en milieu aqueux. Nouv J Chim 1983, 7: 325–331.

    Google Scholar 

  56. [56]

    De Silva CR, Smith S, Shim I, et al. Lanthanide(III)-doped magnetite nanoparticles. J Am Chem Soc 2009, 131: 6336–6337.

    Article  Google Scholar 

  57. [57]

    Parka JC, Yeo S, Kim M, et al. Synthesis and characterization of novel lanthanide-doped magnetite@Au core@shell nanoparticles. Mater Lett 2016, 181: 272–277.

    Article  Google Scholar 

  58. [58]

    Bloemen M, Vandendriessche S, Goovaerts V, et al. Synthesis and characterization of holmium-doped iron oxide nanoparticles. Materials 2014, 7: 1155–1164.

    Article  Google Scholar 

  59. [59]

    Zhao L, Yang H, Zhao X, et al. Magnetic properties of CoFe2O4 ferrite doped with rare earth ion. Mater Lett 2006, 60: 1–6.

    Article  Google Scholar 

  60. [60]

    Dasan YK, Guan BH, Zahari MH, et al. Influence of La3+ substitution on structure, morphology and magnetic properties of nanocrystalline Ni–Zn ferrite. PLoS One 2017, 12: e0170075.

    Article  Google Scholar 

  61. [61]

    Hassanzadeh-Tabrizi SA, Behbahanian S, Amighian J. Synthesis and magnetic properties of NiFe2-xSmxO4 nanopowder. J Magn Magn Mater 2016, 410: 242–247.

    Article  Google Scholar 

  62. [62]

    Khan MA, Islam M, Iqbal MA, et al. Magnetic, ferromagnetic resonance and electrical transport study of Ni1-xTbxFe2O4 spinel ferrites. Ceram Int 2014, 40: 3571–3577.

    Article  Google Scholar 

  63. [63]

    Wu X, Wu W, Qin L, et al. Structure and magnetic properties evolution of nickel–zinc ferrite with lanthanum substitution. J Magn Magn Mater 2015, 379: 232–238.

    Article  Google Scholar 

  64. [64]

    Khan MA, Islam MU, Ishaque M, et al. Effect of Tb substitution on structural, magnetic and electrical properties of magnesium ferrites. Ceram Int 2011, 37: 2519–2526.

    Article  Google Scholar 

  65. [65]

    Padalia D, Johri UC, Zaidi MGH. Effect of cerium substitution on structural and magnetic properties of magnetite nanoparticles. Mater Chem Phys 2016, 169: 89–95.

    Article  Google Scholar 

  66. [66]

    Ounnunkad S, Winotai P, Phanichphant S. Cation distribution and magnetic behavior of Mg1-xZnxFe2O4 ceramics monitored by Mössbauer spectroscopy. J Electroceram 2006, 16: 363–368.

    Article  Google Scholar 

  67. [67]

    Tatarchuk T, Bououdina M, Macyk W, et al. Structural, optical, and magnetic properties of Zn-doped CoFe2O4 nanoparticles. Nanoscale Res Lett 2017, 12: 141.

    Article  Google Scholar 

  68. [68]

    Wang Y, Wu X, Zhang W, et al. Synthesis and electromagnetic properties of La-doped Ni–Zn ferrites. J Magn Magn Mater 2016, 398: 90–105.

    Article  Google Scholar 

  69. [69]

    Ghone DM, Mathe VL, Patankar KK, et al. Microstructure, lattice strain, magnetic and magnetostriction properties of holmium substituted cobalt ferrites obtained by coprecipitation method. J Alloys Compd 2018, 739: 52–61.

    Article  Google Scholar 

  70. [70]

    Goya GF, Berquó TS, Fonseca FC, et al. Static and dynamic magnetic properties of spherical magnetite nanoparticles. J Appl Phys 2003, 94: 3520–3528.

    Article  Google Scholar 

  71. [71]

    Maxwell JC. Electricity and Magnetism. London: Oxford University Press, 1993: 828.

    Google Scholar 

  72. [72]

    Karthik R, Tummala V. Voltage dependent Maxwell–Wagner polarization in dielectric heterostructures Materials Today: Proceedings 2017, 4: 8751–8757.

    Article  Google Scholar 

  73. [73]

    Koops CG. On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys Rev 1951, 83: 121–124.

    Article  Google Scholar 

  74. [74]

    Ahmed MA, Okasha N, Gabal M. Transport and magnetic properties of Co–Zn–La ferrite. Mater Chem Phys 2004, 83: 107–113.

    Article  Google Scholar 

  75. [75]

    Mahalakshmi S, SrinivasaManja K, Nithiyanantham S. Electrical properties of nanophase ferrites doped with rare earth ions. J Supercond Nov Magn 2014, 27: 2083–2088.

    Article  Google Scholar 

  76. [76]

    Sawant VS, Shinde SS, Deokate RJ, et al. Effect of calcining temperature on electrical and dielectric properties of cadmium stannate. Appl Surf Sci 2009, 255: 6675–6678.

    Article  Google Scholar 

  77. [77]

    Babar AR, Shinde SS, Moholkar AV, et al. Structural and optoelectronic properties of antimony incorporated tin oxide thin films. J Alloys Compd 2010, 505: 416–422.

    Article  Google Scholar 

  78. [78]

    Hashim M, Alimuddin, Shirsath SE, et al. Preparation and characterization chemistry of nano-crystalline Ni–Cu–Zn ferrite. J Alloys Compd 2013, 549: 348–357.

    Article  Google Scholar 

  79. [79]

    Ahmed MA, Azab AA, El-Khawas EH, et al. Characterization and transport properties of mixed ferrite system Mn1-xCuxFe2O4; 0.0 = x = 0.7. Synth React Inorg M 2016, 46: 376–384.

    Article  Google Scholar 

  80. [80]

    Verwey EJW, de Boer JH. Cation arrangement in a few oxides with crystal structures of the spinel type. Rec Trav Chim Phys Bas 1936, 55: 531–540.

    Article  Google Scholar 

  81. [81]

    Devan RS, Kolekar YD, Chougule BK. Effect of cobalt substitution on the properties of nickel–copper ferrite. J Phys: Condens Matter 2006, 18: 9809.

    Google Scholar 

  82. [82]

    Aydogdu Y, Yakuphanoglu F, Aydogdu A, et al. Electrical and optical properties of newly synthesized glyoxime complexes. Solid State Sci 2002, 4: 879–883.

    Article  Google Scholar 

  83. [83]

    Gabal MA, Al Angari YM, Zaki HM. Structural, magnetic and electrical characterization of Mg–Ni nano-crystalline ferrites prepared through egg-white precursor. J Magn Magn Mater 2014, 363: 6–12.

    Article  Google Scholar 

  84. [84]

    Chandra BNC, Madhuri W. Microwave assisted solid state reaction method: Investigations on electrical and magnetic properties NiMgZn ferrites. Mater Chem Phys 2016, 181: 432–443.

    Article  Google Scholar 

Download references


The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through General Research Project under grant number G.R.P- 310 -38.

Author information



Corresponding author

Correspondence to R. M. Kershi.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kershi, R.M., Ali, F.M. & Sayed, M.A. Influence of rare earth ion substitutions on the structural, optical, transport, dielectric, and magnetic properties of superparamagnetic iron oxide nanoparticles. J Adv Ceram 7, 218–228 (2018).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • superparamgnetic iron oxide nanoparticles (SPIONs)
  • rare earth (RE) ions
  • structure
  • optical and activation energies
  • electrical conductivity
  • dielectric constant
  • saturation magnetization