Skip to main content

Multi-phase structure and electrical properties of Bi0.5Li0.5ZrO3 doping K0.48Na0.56NbO3 lead-free piezoelectric ceramics

Abstract

(1–x)K0.48Na0.56NbO3xBi0.5Li0.5ZrO3 (KNN–xBLZ, x = 0–0.06) lead-free piezoelectric ceramics were prepared by the conventional solid-state sintering method, and their phase structures and electric properties as well as TC were systematically investigated. The orthorhombic–tetragonal (O–T) two phases were detected in all (1–x)K0.48Na0.56NbO3xBi0.5Li0.5ZrO3 ceramics at 0.01 ≤ x ≤ 0.05. Due to the appropriate ratio between O phase and T phase (CO/CT= 45/55), high piezoelectric properties of d33 = 239 pC/N, kp = 34%, and Pr = 25.23 μC/cm2 were obtained at x = 0.04. Moreover, a high TC = 348°C was also achieved in KNN–xBLZ ceramic at x = 0.04. These results indicate that (1–x)K0.48Na0.56NbO3xBi0.5Li0.5ZrO3 system is a promising candidate for high-temperature piezoelectric devices.

References

  1. [1]

    Jaffe B, Cook WR, Jaffe H. Piezoelectric Ceramics. Academic Press, 1971.

    Google Scholar 

  2. [2]

    Cross E. Materials science: Lead-free at last. Nature 2004, 432: 24–25.

    Article  Google Scholar 

  3. [3]

    Rödel J, Jo W, Seifert KTP, et al. Perspective on the development of lead-free piezoceramics. J Am Ceram Soc 2009, 92: 1153–1177.

    Article  Google Scholar 

  4. [4]

    Li JF, Wang K, Zhu FY, et al. (K,Na)NbO3-based lead-free piezoceramics: Fundamental aspects, processing technologies, and remaining challenges. J Am Ceram Soc 2013, 96: 3677–3696.

    Article  Google Scholar 

  5. [5]

    Saito Y, Takao H, Tani T, et al. Lead-free piezoceramics. Nature 2004, 432: 84–87

    Article  Google Scholar 

  6. [6]

    Zheng T, Wu H, Yuan Y, et al. The structural origin of enhanced piezoelectric performance and stability in lead free ceramics. Energy Environ Sci 2017, 10: 528–537.

    Article  Google Scholar 

  7. [7]

    Xu K, Li J, Lv X, et al. Superior piezoelectric properties in potassium-sodium niobate lead-free ceramics. Adv Mater 2016, 28: 8519–8523.

    Article  Google Scholar 

  8. [8]

    Wang K, Sheng Z-Y, Zhang B-P, et al. (K,Na)NbO3-based lead-free piezoceramics: Status, prospects and challenges. J Inorg Mater 2014, 29: 13–22.

    Article  Google Scholar 

  9. [9]

    Egerton L, Dillon DM. Piezoelectric and dielectric properties of ceramics in the system potassium–sodium niobate. J Am Ceram Soc 1959, 42: 438–442.

    Article  Google Scholar 

  10. [10]

    Zhang B-P, Zhang L-M, Li J-F, et al. Effect of sintering temperature on electrical properties of Na0.5K0.5NbO3 lead-free piezoelectric ceramics prepared by normal sintering. Ferroelectrics 2007, 358: 188–195.

    Article  Google Scholar 

  11. [11]

    Wu L, Zhang JL, Wang CL, et al. Influence of compositional ratio K/Na on physical properties in (K x Na1-x)NbO3 ceramics. J Appl Phys 2008, 103: 084116.

    Article  Google Scholar 

  12. [12]

    Li HT, Zhang BP, Shang PP, et al. Phase transition and high piezoelectric properties of Li0.058(Na0.52+xK0.48)0.942NbO3 lead-free ceramics. J Am Ceram Soc 2011, 94: 628–632.

    Article  Google Scholar 

  13. [13]

    Li H, Zhang B, Li Q, et al. Phase and electrical properties of [Li0.065(Na0.535K0.48)0.95]NbO3 lead-free piezoelectric ceramics sintered at low temperature. Adv Mater Res 2011, 415–417: 1679–1682.

    Google Scholar 

  14. [14]

    Wu J, Xiao D, Zhu J. Potassium–sodium niobate lead-free piezoelectric materials: Past, present, and future of phase boundaries. Chem Rev 2015, 115: 2559–2595.

    Article  Google Scholar 

  15. [15]

    Zheng T, Wu J, Cheng X, et al. New potassium–sodium niobate material system: A giant-d 33 and high-T C lead-free piezoelectric. Dalton Trans 2014, 43: 11759–11766.

    Article  Google Scholar 

  16. [16]

    Jiang L, Xing J, Tan Z, et al. High piezoelectricity in (K,Na)(Nb,Sb)O3–(Bi,La,Na,Li)ZrO3 lead-free ceramics. J Mater Sci 2016, 51: 4963–4972.

    Article  Google Scholar 

  17. [17]

    Yuan Y, Wu J, Tao H, et al. Composition design and electrical properties in (1-y)(K0.40Na0.60)0.985Li0.015(Nb1−xSb x )O3–yBi0.5Na0.5ZrO3 lead-free ceramics. J Appl Phys 2015, 117: 084103.

    Article  Google Scholar 

  18. [18]

    Shi H, Chen J, Wang R, et al. Full set of material constants of (Na0.5K0.5)NbO3–BaZrO3–(Bi0.5Li0.5)TiO3 lead-free piezoelectric ceramics at the morphotropic phase boundary. J Alloys Compd 2016, 655: 290–295.

    Article  Google Scholar 

  19. [19]

    Zheng T, Wu J, Xiao D, et al. Potassium–sodium niobate lead-free ceramics: Modified strain as well as piezoelectricity. J Mater Chem A 2015, 3: 1868–1874.

    Article  Google Scholar 

  20. [20]

    Wang R, Wang K, Yao F, et al. Temperature stability of lead-free niobate piezoceramics with engineered morphotropic phase boundary. J Am Ceram Soc 2015, 98: 2177–2182.

    Article  Google Scholar 

  21. [21]

    Cheng X, Wu J, Zheng T, et al. Rhombohedral–tetragonal phase coexistence and piezoelectric properties based on potassium–sodium niobate ternary system. J Alloys Compd 2014, 610: 86–91.

    Article  Google Scholar 

  22. [22]

    Cheng X, Wu J, Lou X, et al. Achieving both giant d 33 and high TC in patassium–sodium niobate ternary system. ACS Appl Mater Interfaces 2014, 6: 750–756.

    Article  Google Scholar 

  23. [23]

    Zhang B, Wu J, Wang X, et al. Rhombohedral–orthorhombic phase coexistence and electrical properties of Ta and BaZrO3 co-modified (K,Na)NbO3 lead-free ceramics. Curr Appl Phys 2013, 13: 1647–1650.

    Article  Google Scholar 

  24. [24]

    Zushi J, Ariizumi T, Kojima S, et al. Formation of morphotropic phase boundary in (Na0.5K0.5)NbO3–BaZrO3–(Bi0.5Li0.5)TiO3 lead-free piezoelectric ceramics. Jpn J Appl Phys 2013, 52: 07HB02.

    Article  Google Scholar 

  25. [25]

    Cheng X, Wu J, Wang X, et al. Giant d 33 in (K,Na)(Nb,Sb)O3–(Bi,Na,K,Li)ZrO3 based lead-free piezoelectrics with high TC. Appl Phys Lett 2013, 103: 052906.

    Article  Google Scholar 

  26. [26]

    Zhang B, Wu J, Cheng X, et al. Lead-free piezoelectrics based on potassium–sodium niobate with giant d 33. ACS Appl Mater Interfaces 2013, 5: 7718–7725.

    Article  Google Scholar 

  27. [27]

    Liang W, Wu W, Xiao D, et al. Construction of new morphotropic phase boundary in 0.94(K0.4−x Na0.6Ba x Nb1−xZr x )O3–0.06LiSbO3 lead-free piezoelectric ceramics. J Mater Sci 2011, 46: 6871–6876.

    Article  Google Scholar 

  28. [28]

    Zhen Y, Li JF. Normal sintering of (K,Na)NbO3-based ceramics: Influence of sintering temperature on densification, microstructure, and electrical properties. J Am Ceram Soc 2006, 89: 3669–3675.

    Article  Google Scholar 

  29. [29]

    Park S-H, Ahn C-W, Nahm S, et al. Microstructure and piezoelectric properties of ZnO-added (Na0.5K0.5)NbO3 ceramics. Jpn J Appl Phys 2004, 43: L1072–L1074.

    Article  Google Scholar 

  30. [30]

    Kim MS, Jeong SJ, Song JS. Microstructures and piezoelectric properties in the Li2O-excess 0.95(Na0.5K0.5)NbO3–0.05LiTaO3 ceramics. J Am Ceram Soc 2007, 90: 3338–3340.

    Article  Google Scholar 

  31. [31]

    Mgbemere HE, Hinterstein M, Schneider GA. Structural phase transitions and electrical properties of (K x Na1−x)NbO3-based ceramics modified with Mn. J Eur Ceram Soc 2012, 32: 4341–4352.

    Article  Google Scholar 

  32. [32]

    Wu J, Xiao J, Zheng T, et al. Giant piezoelectricity of (K,Na)(Nb,Sb)O3–(Bi,Na,K,Pb)ZrO3 ceramics with rhombohedral–tetragonal (R–T) phase boundary. Scripta Mater 2014, 88: 41–44.

    Article  Google Scholar 

  33. [33]

    Zhou J-J, Cheng L-Q, Wang K, et al. The phase structure and electric properties of low-temperature sintered (K,Na)NbO3-based piezoceramics modified by CuO. Ceram Int 2014, 40: 2927–2931.

    Article  Google Scholar 

  34. [34]

    Paula AJ, Parra R, Zaghete MA, et al. Study on the K3Li2Nb5O15 formation during the production of (Na0.5K0.5)(1-x)Li x NbO3 lead-free piezoceramics at the morphotropic phase boundary. Solid State Commun 2009, 149: 1587–1590.

    Article  Google Scholar 

  35. [35]

    Dai Y, Zhang X, Zhou G. Phase transitional behavior in K0.5Na0.5NbO3–LiTaO3 ceramics. Appl Phys Lett 2007, 90: 262903.

    Article  Google Scholar 

  36. [36]

    Zuo R, Fu J, Lv D. Phase transformation and tunable piezoelectric properties of lead-free (Na0.52K0.48−xLi x ) (Nb1−xySb y Ta x )O3 system. J Am Ceram Soc 2009, 92: 283–285.

    Article  Google Scholar 

  37. [37]

    Li E, Kakemoto H, Wada S, et al. Influence of CuO on the structure and piezoelectric properties of the alkaline niobate-based lead-free ceramics. J Am Ceram Soc 2007, 90: 1787–1791.

    Article  Google Scholar 

  38. [38]

    Singh SK, Maruyama K, Ishiwara H. Reduced leakage current in La and Ni codoped BiFeO3 thin films. Appl Phys Lett 2007, 91: 112913.

    Article  Google Scholar 

  39. [39]

    Yin LH, Zhao BC, Fang J, et al. Improved leakage current and ferromagnetic properties in magnetic field annealed BiFeO3-based ceramics. J Solid State Chem 2012, 194: 194–198.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20130006110006) and National Natural Science Foundation of China (Grant Nos. 51272023 and 51472026).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Boping Zhang.

Additional information

This article is published with open access at Springerlink.com

Rights and permissions

Open Access The articles published in this journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Peng, X., Zhang, B., Zhu, L. et al. Multi-phase structure and electrical properties of Bi0.5Li0.5ZrO3 doping K0.48Na0.56NbO3 lead-free piezoelectric ceramics. J Adv Ceram 7, 79–87 (2018). https://doi.org/10.1007/s40145-018-0259-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40145-018-0259-3

Keywords

  • lead-free piezoelectric ceramics
  • potassium–sodium niobate (KNN)
  • solid-state sintering
  • multi-phase
  • electrical properties