Journal of Advanced Ceramics

, Volume 7, Issue 1, pp 79–87 | Cite as

Multi-phase structure and electrical properties of Bi0.5Li0.5ZrO3 doping K0.48Na0.56NbO3 lead-free piezoelectric ceramics

  • Xiaoyan Peng
  • Boping Zhang
  • Lifeng Zhu
  • Lei Zhao
  • Ruixiao Ma
  • Bo Liu
  • Xiaodong Wang
Open Access
Research Article


(1–x)K0.48Na0.56NbO3xBi0.5Li0.5ZrO3 (KNN–xBLZ, x = 0–0.06) lead-free piezoelectric ceramics were prepared by the conventional solid-state sintering method, and their phase structures and electric properties as well as TC were systematically investigated. The orthorhombic–tetragonal (O–T) two phases were detected in all (1–x)K0.48Na0.56NbO3xBi0.5Li0.5ZrO3 ceramics at 0.01 ≤ x ≤ 0.05. Due to the appropriate ratio between O phase and T phase (CO/CT= 45/55), high piezoelectric properties of d33 = 239 pC/N, kp = 34%, and Pr = 25.23 μC/cm2 were obtained at x = 0.04. Moreover, a high TC = 348°C was also achieved in KNN–xBLZ ceramic at x = 0.04. These results indicate that (1–x)K0.48Na0.56NbO3xBi0.5Li0.5ZrO3 system is a promising candidate for high-temperature piezoelectric devices.


lead-free piezoelectric ceramics potassium–sodium niobate (KNN) solid-state sintering multi-phase electrical properties 



This work was supported by Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20130006110006) and National Natural Science Foundation of China (Grant Nos. 51272023 and 51472026).


  1. [1]
    Jaffe B, Cook WR, Jaffe H. Piezoelectric Ceramics. Academic Press, 1971.Google Scholar
  2. [2]
    Cross E. Materials science: Lead-free at last. Nature 2004, 432: 24–25.CrossRefGoogle Scholar
  3. [3]
    Rödel J, Jo W, Seifert KTP, et al. Perspective on the development of lead-free piezoceramics. J Am Ceram Soc 2009, 92: 1153–1177.CrossRefGoogle Scholar
  4. [4]
    Li JF, Wang K, Zhu FY, et al. (K,Na)NbO3-based lead-free piezoceramics: Fundamental aspects, processing technologies, and remaining challenges. J Am Ceram Soc 2013, 96: 3677–3696.CrossRefGoogle Scholar
  5. [5]
    Saito Y, Takao H, Tani T, et al. Lead-free piezoceramics. Nature 2004, 432: 84–87CrossRefGoogle Scholar
  6. [6]
    Zheng T, Wu H, Yuan Y, et al. The structural origin of enhanced piezoelectric performance and stability in lead free ceramics. Energy Environ Sci 2017, 10: 528–537.CrossRefGoogle Scholar
  7. [7]
    Xu K, Li J, Lv X, et al. Superior piezoelectric properties in potassium-sodium niobate lead-free ceramics. Adv Mater 2016, 28: 8519–8523.CrossRefGoogle Scholar
  8. [8]
    Wang K, Sheng Z-Y, Zhang B-P, et al. (K,Na)NbO3-based lead-free piezoceramics: Status, prospects and challenges. J Inorg Mater 2014, 29: 13–22.CrossRefGoogle Scholar
  9. [9]
    Egerton L, Dillon DM. Piezoelectric and dielectric properties of ceramics in the system potassium–sodium niobate. J Am Ceram Soc 1959, 42: 438–442.CrossRefGoogle Scholar
  10. [10]
    Zhang B-P, Zhang L-M, Li J-F, et al. Effect of sintering temperature on electrical properties of Na0.5K0.5NbO3 lead-free piezoelectric ceramics prepared by normal sintering. Ferroelectrics 2007, 358: 188–195.CrossRefGoogle Scholar
  11. [11]
    Wu L, Zhang JL, Wang CL, et al. Influence of compositional ratio K/Na on physical properties in (KxNa1-x)NbO3 ceramics. J Appl Phys 2008, 103: 084116.CrossRefGoogle Scholar
  12. [12]
    Li HT, Zhang BP, Shang PP, et al. Phase transition and high piezoelectric properties of Li0.058(Na0.52+xK0.48)0.942NbO3 lead-free ceramics. J Am Ceram Soc 2011, 94: 628–632.CrossRefGoogle Scholar
  13. [13]
    Li H, Zhang B, Li Q, et al. Phase and electrical properties of [Li0.065(Na0.535K0.48)0.95]NbO3 lead-free piezoelectric ceramics sintered at low temperature. Adv Mater Res 2011, 415–417: 1679–1682.Google Scholar
  14. [14]
    Wu J, Xiao D, Zhu J. Potassium–sodium niobate lead-free piezoelectric materials: Past, present, and future of phase boundaries. Chem Rev 2015, 115: 2559–2595.CrossRefGoogle Scholar
  15. [15]
    Zheng T, Wu J, Cheng X, et al. New potassium–sodium niobate material system: A giant-d 33 and high-T C lead-free piezoelectric. Dalton Trans 2014, 43: 11759–11766.CrossRefGoogle Scholar
  16. [16]
    Jiang L, Xing J, Tan Z, et al. High piezoelectricity in (K,Na)(Nb,Sb)O3–(Bi,La,Na,Li)ZrO3 lead-free ceramics. J Mater Sci 2016, 51: 4963–4972.CrossRefGoogle Scholar
  17. [17]
    Yuan Y, Wu J, Tao H, et al. Composition design and electrical properties in (1-y)(K0.40Na0.60)0.985Li0.015(Nb1−xSbx)O3–yBi0.5Na0.5ZrO3 lead-free ceramics. J Appl Phys 2015, 117: 084103.CrossRefGoogle Scholar
  18. [18]
    Shi H, Chen J, Wang R, et al. Full set of material constants of (Na0.5K0.5)NbO3–BaZrO3–(Bi0.5Li0.5)TiO3 lead-free piezoelectric ceramics at the morphotropic phase boundary. J Alloys Compd 2016, 655: 290–295.CrossRefGoogle Scholar
  19. [19]
    Zheng T, Wu J, Xiao D, et al. Potassium–sodium niobate lead-free ceramics: Modified strain as well as piezoelectricity. J Mater Chem A 2015, 3: 1868–1874.CrossRefGoogle Scholar
  20. [20]
    Wang R, Wang K, Yao F, et al. Temperature stability of lead-free niobate piezoceramics with engineered morphotropic phase boundary. J Am Ceram Soc 2015, 98: 2177–2182.CrossRefGoogle Scholar
  21. [21]
    Cheng X, Wu J, Zheng T, et al. Rhombohedral–tetragonal phase coexistence and piezoelectric properties based on potassium–sodium niobate ternary system. J Alloys Compd 2014, 610: 86–91.CrossRefGoogle Scholar
  22. [22]
    Cheng X, Wu J, Lou X, et al. Achieving both giant d 33 and high TC in patassium–sodium niobate ternary system. ACS Appl Mater Interfaces 2014, 6: 750–756.CrossRefGoogle Scholar
  23. [23]
    Zhang B, Wu J, Wang X, et al. Rhombohedral–orthorhombic phase coexistence and electrical properties of Ta and BaZrO3 co-modified (K,Na)NbO3 lead-free ceramics. Curr Appl Phys 2013, 13: 1647–1650.CrossRefGoogle Scholar
  24. [24]
    Zushi J, Ariizumi T, Kojima S, et al. Formation of morphotropic phase boundary in (Na0.5K0.5)NbO3–BaZrO3–(Bi0.5Li0.5)TiO3 lead-free piezoelectric ceramics. Jpn J Appl Phys 2013, 52: 07HB02.CrossRefGoogle Scholar
  25. [25]
    Cheng X, Wu J, Wang X, et al. Giant d 33 in (K,Na)(Nb,Sb)O3–(Bi,Na,K,Li)ZrO3 based lead-free piezoelectrics with high TC. Appl Phys Lett 2013, 103: 052906.CrossRefGoogle Scholar
  26. [26]
    Zhang B, Wu J, Cheng X, et al. Lead-free piezoelectrics based on potassium–sodium niobate with giant d 33. ACS Appl Mater Interfaces 2013, 5: 7718–7725.CrossRefGoogle Scholar
  27. [27]
    Liang W, Wu W, Xiao D, et al. Construction of new morphotropic phase boundary in 0.94(K0.4−x Na0.6BaxNb1−xZrx)O3–0.06LiSbO3 lead-free piezoelectric ceramics. J Mater Sci 2011, 46: 6871–6876.CrossRefGoogle Scholar
  28. [28]
    Zhen Y, Li JF. Normal sintering of (K,Na)NbO3-based ceramics: Influence of sintering temperature on densification, microstructure, and electrical properties. J Am Ceram Soc 2006, 89: 3669–3675.CrossRefGoogle Scholar
  29. [29]
    Park S-H, Ahn C-W, Nahm S, et al. Microstructure and piezoelectric properties of ZnO-added (Na0.5K0.5)NbO3 ceramics. Jpn J Appl Phys 2004, 43: L1072–L1074.CrossRefGoogle Scholar
  30. [30]
    Kim MS, Jeong SJ, Song JS. Microstructures and piezoelectric properties in the Li2O-excess 0.95(Na0.5K0.5)NbO3–0.05LiTaO3 ceramics. J Am Ceram Soc 2007, 90: 3338–3340.CrossRefGoogle Scholar
  31. [31]
    Mgbemere HE, Hinterstein M, Schneider GA. Structural phase transitions and electrical properties of (KxNa1−x)NbO3-based ceramics modified with Mn. J Eur Ceram Soc 2012, 32: 4341–4352.CrossRefGoogle Scholar
  32. [32]
    Wu J, Xiao J, Zheng T, et al. Giant piezoelectricity of (K,Na)(Nb,Sb)O3–(Bi,Na,K,Pb)ZrO3 ceramics with rhombohedral–tetragonal (R–T) phase boundary. Scripta Mater 2014, 88: 41–44.CrossRefGoogle Scholar
  33. [33]
    Zhou J-J, Cheng L-Q, Wang K, et al. The phase structure and electric properties of low-temperature sintered (K,Na)NbO3-based piezoceramics modified by CuO. Ceram Int 2014, 40: 2927–2931.CrossRefGoogle Scholar
  34. [34]
    Paula AJ, Parra R, Zaghete MA, et al. Study on the K3Li2Nb5O15 formation during the production of (Na0.5K0.5)(1-x)LixNbO3 lead-free piezoceramics at the morphotropic phase boundary. Solid State Commun 2009, 149: 1587–1590.CrossRefGoogle Scholar
  35. [35]
    Dai Y, Zhang X, Zhou G. Phase transitional behavior in K0.5Na0.5NbO3–LiTaO3 ceramics. Appl Phys Lett 2007, 90: 262903.CrossRefGoogle Scholar
  36. [36]
    Zuo R, Fu J, Lv D. Phase transformation and tunable piezoelectric properties of lead-free (Na0.52K0.48−xLix) (Nb1−xySbyTax)O3 system. J Am Ceram Soc 2009, 92: 283–285.CrossRefGoogle Scholar
  37. [37]
    Li E, Kakemoto H, Wada S, et al. Influence of CuO on the structure and piezoelectric properties of the alkaline niobate-based lead-free ceramics. J Am Ceram Soc 2007, 90: 1787–1791.CrossRefGoogle Scholar
  38. [38]
    Singh SK, Maruyama K, Ishiwara H. Reduced leakage current in La and Ni codoped BiFeO3 thin films. Appl Phys Lett 2007, 91: 112913.CrossRefGoogle Scholar
  39. [39]
    Yin LH, Zhao BC, Fang J, et al. Improved leakage current and ferromagnetic properties in magnetic field annealed BiFeO3-based ceramics. J Solid State Chem 2012, 194: 194–198.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Open Access The articles published in this journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Xiaoyan Peng
    • 1
    • 2
  • Boping Zhang
    • 1
  • Lifeng Zhu
    • 1
  • Lei Zhao
    • 3
  • Ruixiao Ma
    • 1
  • Bo Liu
    • 1
  • Xiaodong Wang
    • 1
  1. 1.School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.New Metallurgy Hi-Tech Group Co., Ltd., China Iron & Steel Research Institute GroupBeijingChina
  3. 3.Hebei Key Lab of Optic-Electronic Information and Materials, College of Physics Science & TechnologyHebei UniversityBaodingChina

Personalised recommendations