Journal of Advanced Ceramics

, Volume 6, Issue 2, pp 165–175 | Cite as

Pressureless sintering of ZrC with variable stoichiometry

  • Katrin Schönfeld
  • Hans-Peter Martin
  • Alexander Michaelis
Open Access
Research Article
  • 352 Downloads

Abstract

This paper presents the experiments on the synthesis of zirconium carbide (ZrC) using carbothermal reduction of zirconia (ZrO2). The ratio of ZrO2:C is used to adapt ZrC x O y with x < 1 or ZrC + C. The modification of ZrC x O y and the total carbon amount allows the use of pressureless sintering method in combination with sintering temperatures ≤ 2000 °C. Fully densified ZrC products are obtained. The relevant details of ZrC formation are investigated by X-ray diffraction (XRD). The sintered products are characterized by XRD, field emission scanning electron microscopy (FESEM), as well as mechanical and electrical methods. XRD and FESEM investigations show that ZrC x O y is formed during the manufacturing process. The grain size and additional zirconia or carbon are related to the ZrO2:C ratio of the starting powder mixture. Bending strength up to 300 MPa, Young’s modulus up to 400 GPa, fracture toughness up to 4.1 MPa·m1/2, and electrical resistance at room temperature around 10−4 Ω·cm are reached by the pressureless sintered ZrC.

Keywords

zirconium carbide (ZrC) carbothermal reduction sintering mechanical properties electrical properties 

References

  1. [1]
    Barnier P, Brodhag C, Thevenot F. Hot-pressing kinetics of zirconium carbide. J Mater Sci 1986, 21: 2547–2552.CrossRefGoogle Scholar
  2. [2]
    Chakrabarti T, Rangaraj L, Jayaram V. Effect of zirconium on the densification of reactively hot-pressed zirconium carbide. J Am Ceram Soc 2014, 97: 3092–3102.CrossRefGoogle Scholar
  3. [3]
    Landwehr SE, Hilmas GE, Fahrenholtz WG, et al. Microstructure and mechanical characterization of ZrC–Mo cermets produced by hot isostatic pressing. Mat Sci Eng A 2008, 497: 79–86.CrossRefGoogle Scholar
  4. [4]
    Nachiappan C, Rangaraj L, Divakar C, et al. Synthesis and densification of monolithic zirconium carbide by reactive hot pressing. J Am Ceram Soc 2010, 93: 1341–1346.Google Scholar
  5. [5]
    Wang X-G, Guo W-M, Kan Y-M, et al. Densification behavior and properties of hot-pressed ZrC ceramics with Zr and graphite additives. J Eur Ceram Soc 2011, 31: 1103–1111.CrossRefGoogle Scholar
  6. [6]
    Wang Y, Chen L, Zhang T, et al. Effect of iron additive on the sintering behavior of hot-pressed ZrC–W composites. Key Eng Mater 2008, 368–372: 1764–1766.CrossRefGoogle Scholar
  7. [7]
    Rangaraj L, Divakar C, Jayaram V. Reactive hot pressing of ZrB2–ZrCx ultra-high temperature ceramic composites with the addition of SiC particulate. J Eur Ceram Soc 2010, 30: 3263–3266.CrossRefGoogle Scholar
  8. [8]
    Medri V, Monteverde F, Balbo A, et al. Comparison of ZrB2–ZrC–SiC composites fabricated by spark plasma sintering and hot-pressing. Adv Eng Mater 2005, 7: 159–163.CrossRefGoogle Scholar
  9. [9]
    Zhao L, Jia D, Wang Y, Rao J, et al. ZrC–ZrB2 matrix composites with enhanced toughness prepared by reactive hot pressing. Scripta Mater 2010, 63: 887–890.CrossRefGoogle Scholar
  10. [10]
    Zimmermann JW, Hilmas GE, Fahrenholtz WG, et al. Fabrication and properties of reactively hot pressed ZrB2–SiC ceramics. J Eur Ceram Soc 2007, 27: 2729–2736.CrossRefGoogle Scholar
  11. [11]
    Antou G, Gendre M, Laborde E, et al. High temperature compressive creep of spark plasma sintered zirconium (oxy-)carbide. Mat Sci Eng A 2014, 612: 326–334.CrossRefGoogle Scholar
  12. [12]
    Gendre M, Maître A, Trolliard G. A study of the densification mechanisms during spark plasma sintering of zirconium (oxy-)carbide powders. Acta Mater 2010, 58: 2598–2609.CrossRefGoogle Scholar
  13. [13]
    Gendre M, Maître A, Trolliard G. Synthesis of zirconium oxycarbide (ZrCxOy) powders. Influence of stoichiometry on densification kinetics during spark plasma sintering and on mechanical properties. J Eur Ceram Soc 2011, 31: 2377–2385.CrossRefGoogle Scholar
  14. [14]
    Silvestroni L, Sciti D. Microstruture and properties of pressureless sintered ZrC-based materials. J Mater Res 2008, 23: 1882–1889.CrossRefGoogle Scholar
  15. [15]
    Zhao L, Jia D, Duan X, et al. Pressureless sintering of ZrC-based ceramics by enhancing powder sinterability. Int J Refract Met H 2011, 29: 516–521.CrossRefGoogle Scholar
  16. [16]
    Sciti D, Silvestroni L, Nygren M. Spark plasma sintering of Zr- and Hf-borides with decreasing amounts of MoSi2 as sintering aid. J Eur Ceram Soc 2008, 28: 1287–1296.CrossRefGoogle Scholar
  17. [17]
    Sun S-K, Zhang G-J, Wu W-W, et al. Reactive spark plasma sintering of ZrC and HfC ceramics with fine microstructures. Scripta Mater 2013, 69: 139–142.CrossRefGoogle Scholar
  18. [18]
    Maitre A, Lefort P. Solid state reaction of zirconia with carbon. Solid State Ionics 1997, 104: 109–122.CrossRefGoogle Scholar
  19. [19]
    Xie J, Fu Z, Wang Y, et al. Synthesis of nanosized zirconium carbide powders by a combinational method of sol–gel and pulse current heating. J Eur Ceram Soc 2014, 34: 13.e1–13.e7.Google Scholar
  20. [20]
    Núñez-González B, Ortiz AL, Guiberteau F, et al. Improvement of the spark-plasma-sintering kinetics of ZrC by high-energy ball-milling. J Am Ceram Soc 2012, 95: 453–456.CrossRefGoogle Scholar
  21. [21]
    Kim J-H, Seo M, Park C, et al. Effect of two-step reduction on ZrC size and dispersion. J Alloys Compd 2015, 633: 5–10.CrossRefGoogle Scholar
  22. [22]
    Sara RV. The system zirconium–carbon. J Am Ceram Soc 1965, 48: 243–247.CrossRefGoogle Scholar
  23. [23]
    Katoh Y, Vasudevamurthy G, Nozawa T, et al. Properties of zirconium carbide for nuclear fuel applications. J Nucl Mater 2013, 441: 718–742.CrossRefGoogle Scholar
  24. [24]
    Kempter CP, Fries JR. Crystallographic data 189: Zirconium carbide. Anal Chem 1960, 32: 570.CrossRefGoogle Scholar
  25. [25]
    Cheng D, Wang, S, Ye H. First-principles calculations of the elastic properties of ZrC and ZrN. J Alloys Compd 2004, 377: 221–224.CrossRefGoogle Scholar
  26. [26]
    Riedel R. Handbook of Ceramic Hard Materials. WILEY-VCH Verlag GmbH, 2000.CrossRefGoogle Scholar
  27. [27]
    Sagdic S, Goller G. Densification behavior and mechanical properties of spark plasma sintered ZrC–SiC and ZrC–SiC–CNT composites. J Aus Ceram Soc 2014, 50: 76–82.Google Scholar

Copyright information

© The Author(s) 2017

Open Access The articles published in this journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Katrin Schönfeld
    • 1
  • Hans-Peter Martin
    • 1
  • Alexander Michaelis
    • 1
  1. 1.Fraunhofer Institute for Ceramic Technologies and Systems IKTSDresdenGermany

Personalised recommendations