Skip to main content

Microstructures and microwave dielectric properties of (Ba1−xSrx)4(Sm0.4Nd0.6)28/3Ti18O54 solid solutions

Abstract

(Ba1−xSrx)4(Sm0.4Nd0.6)28/3Ti18O54 (x = 0.02, 0.04, 0.06, 0.08, 0.1) solid solutions were prepared by the conventional solid-state reaction process. It was found that (Ba1−xSrx)4(Sm0.4Nd0.6)28/3Ti18O54 ceramics are fully composed of BaSm2Ti4O12 and BaNd2Ti5O14 phases for all the compositions. The increasing x value (0.02 ≤ x ≤ 0.1) in ((Ba1−xSrx)4(Sm0.4Nd0.6)28/3Ti18O54 ceramics can not only obtain high Q × f value but also effectively enhance the permittivity (εr). The (Ba1−xSrx)4(Sm0.4Nd0.6)28/3Ti18O54 ceramic with x = 0.08, sintered at 1440 °C for 4 h, shows excellent microwave dielectric properties of permittivity (εr) ≈ 93.19, quality factor (Q × f) ≈ 9770.14 GHz (at 3.415 GHz), and almost near-zero temperature coefficient of resonant frequency (τf) ≈ +4.56 ppm/°C.

References

  1. Wersing W. Microwave ceramics for resonators and filters. Current Opinion in Solid State and Materials Science 1996, 1: 715–731.

    Article  Google Scholar 

  2. Bolton RL. Temperature compensating ceramic capacitors in the system barium-rare earth oxide titania. Ph.D. Thesis. The University of Illinois, 1968.

    Google Scholar 

  3. Sremoolanathan H, Sebastian MT, Pezholil M. Dielectric resonators in BaO–Ln2O3–5TiO2 system (Ln = La, Pr, Nd, Sm). British Ceramic Transactions 1996, 95: 79–81.

    Google Scholar 

  4. Ohsato H. Science of tungstenbronze-type like Ba6–3xR8+2xTi18O54 (R = rare earth) microwave dielectric solid solutions. J Eur Ceram Soc 2001, 21: 2703–2711.

    Article  Google Scholar 

  5. Valant M, Suvorov D, Rawn CJ. Intrinsic reasons for variations in dielectric properties of Ba6-3xR8+2xTi18O54 (R = LA–Gd) solid solutions. Jpn J Appl Phys 1999, 38: 2820.

    Article  Google Scholar 

  6. Varfolomeeva MB, Miranov AS. The synthesis and homogeneity ranges of the phases Ba6-3xR8+2xTi18O54. Russ J Inorg Chem 1988, 33: 607.

    Google Scholar 

  7. Kolar D, Skapin SD, Suvorov D. Phase equlibria in the system BaO–TiO2–Gd2O3. Acta Chimica Slovenica 1999, 46: 193–202.

    Google Scholar 

  8. Kolar D, Gaberšček S, Stadler Z, et al. High stability, low loss dielectrics in the system BaO–Nd2O3–TiO2–Bi2O3. Ferroelectrics 1980, 27: 269–272.

    Article  Google Scholar 

  9. Ohsato H, Ohhashi T, Kato H, et al. Microwave dielectric properties and structure of the Ba6-3xR8+2xTi18O54 solid solutions. Jpn J Appl Phys 1995, 34: 187–191.

    Article  Google Scholar 

  10. Yao X, Lin H, Zhao X, et al. Effects of Al2O3 addition on the microstructure and microwave dielectric properties of Ba4Nd9.33Ti18O54 ceramics. Ceram Int 2012, 38: 6723–6728.

    Article  Google Scholar 

  11. Ohsato H, Mizuta M, Ikoma T, et al. Microwave dielectric properties of tungsten bronze-type Ba6-3xR8+2xTi18O54 (R = La, Pr, Nd and Sm) solid solutions. J Ceram Soc Jpn 1998, 106: 178–182.

    Article  Google Scholar 

  12. Pei J, Yue Z, Zhao F, et al. Effects of silver doping on the sol–gel-derived Ba6-3xR8+2xTi18O54 microwave dielectric ceramics. J Am Ceram Soc 2007, 90: 3131–3137.

    Article  Google Scholar 

  13. Ubic R, Reaney IM, Lee WE, et al. Properties of the microwave dielectric phase Ba6-3xR8+2xTi18O54. Ferroelectrics 1999, 228: 271–282.

    Article  Google Scholar 

  14. Huang X, Zhang J, Wang W, et al. Effect of pH value on electromagnetic loss properties of Co–Zn ferrite prepared via coprecipitation method. J Magn Magn Mater 2016, 405: 36–41.

    Article  Google Scholar 

  15. Huang X, Zhang J, Xiao S, et al. Unique electromagnetic properties of the zinc ferrite nanofiber. Mater Lett 2014, 124: 126–128.

    Article  Google Scholar 

  16. Sebastian MT. Dielectric Materials for Wireless Communication. Elsevier, 2010.

    Google Scholar 

  17. Nagatomo T, Otagiri T, Suzuki M, et al. Microwave dielectric properties and crystal structure of the tungstenbronze-type like (Ba1-αSrα)6(Nd1-βYβ)8Ti18O54 solid solutions. J Eur Ceram Soc 2006, 26: 1895–1898.

    Article  Google Scholar 

  18. Zhu J, Kipkoech ER, Lu W. Effects of LnAlO3 (Ln = La, Nd, Sm) additives on the properties of Ba4.2Nd9.2Ti18O54 ceramics. J Eur Ceram Soc 2006, 26: 2027–2030.

    Article  Google Scholar 

  19. Zheng H, Reaney IM, Muir D, et al. Effect of glass additions on the sintering and microwave properties of composite dielectric ceramics based on BaO–Ln2O3–TiO2 (Ln = Nd, La). J Eur Ceram Soc 2007, 27: 4479–4487.

    Article  Google Scholar 

  20. Jacob KS, Satheesh R, Ratheesh R. Preparation and microwave characterization of BaNd2-xSmxTi4O12 (0 = x = 2) ceramics and their effect on the temperature coefficient of dielectric constant in polytetrafluoroethylene composites. Mater Res Bull 2009, 44: 2022–2026.

    Article  Google Scholar 

  21. Xia H-T, Kuang X-J, Wang C-H, et al. Conductivity and dielectric loss of tungsten-bronze-type BaNd2Ti4O12 microwave ceramics. Acta Phys-Chim Sin 2011, 27: 2009–2014.

    Google Scholar 

  22. Wu M-C, Hsieh M-K, Yen C-W, et al. Low sintering BaNd2Ti4O12 microwave ceramics prepared by CuO thin layer coated powder. J Eur Ceram Soc 2007, 27: 2835–2839.

    Article  Google Scholar 

  23. Long M, Zhuang W, Tang B, et al. Microwave dielectric properties of Ba0.75Sr0.25(NdxBi1–x)2Ti4O12 solid solutions. Ceram–Silikáty 2011, 55: 373–377.

    Google Scholar 

  24. Long M, Zhuang W, Tang B, et al. Effect of molar ratio of Nd/Bi on the microwave ceramic properties of Ba0.75Sr0.25(NdxBi1–x)2Ti4O12 microwave materials. Piezoelectrics & Acoustooptics 2012, 34: 106–109. (in Chinese)

    Google Scholar 

  25. Zhang Y-D, Zhou D, Guo J, et al. Microwave dielectric properties of the (1–x)(Mg0.95Zn0.05)TiO3–x(Ca0.8Sm0.4/3) TiO3 temperature stable ceramics. Mater Lett 2014, 32: 200–202.

    Google Scholar 

  26. Pang L-X, Zhou D, Cai C-L, et al. Infrared spectroscopy and microwave dielectric properties of ultra-low temperature firing (K0.5La0.5)MoO4 ceramics. Mater Lett 2013, 92: 36–38.

    Article  Google Scholar 

  27. Zhou H, Liu X, Chen X, et al. Ba4LiNb3–xSbxO12: Phase evolution, microstructure and optimized microwave dielectric properties. Mater Lett 2013, 96: 199–202.

    Article  Google Scholar 

  28. Wang X, Fu R, Chen X. Crystal structure and microwave dielectric properties of (Ba1-aSra)Sm2Ti4O12 solid solutions. J Mater Sci: Mater El 2016, 27: 11137–11141.

    Google Scholar 

  29. Webhoffer A, Feltz A. Microwave dielectric properties of ceramics of the system Ba6–x(SmyNd1-y)8+2x/3Ti18O54. J Mater Sci Lett 1999, 18: 719–721.

    Article  Google Scholar 

  30. Kagomiya I, Suzuki M, Kakimoto K, et al. Microwave dielectric properties of tungsten bronze type like (Ba1-aSra)6-3xR8+2xTi18O54 (R = Sm, Nd) solid solutions. J Eur Ceram Soc 2007, 27: 3059–3062.

    Article  Google Scholar 

  31. Huang X, Chen Y, Yu J, et al. Fabrication and electromagnetic loss properties of Fe3O4 nanofibers. J Mater Sci: Mater El 2015, 26: 3474–3478.

    Google Scholar 

  32. Huang X, Zhang J, Liu Z, et al. Facile preparation and microwave absorption properties of porous hollow BaFe12O19/CoFe2O4 composite microrods. J Alloys Compd 2015, 648: 1072–1075.

    Article  Google Scholar 

  33. Melvin GJH, Ni Q-Q, Natsuki T. Electromagnetic wave absorption properties of barium titanate/carbon nanotube hybrid nanocomposites. J Alloys Compd 2014, 615: 84–90.

    Article  Google Scholar 

  34. Zheng XH, Chen XM. Dielectric ceramics with tungsten bronze structure in BaO–Nd2O3–TiO2–Nb2O5 system. J Mater Res 2002, 17: 1664–1670.

    Article  Google Scholar 

  35. Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst 1976, A32: 751–767.

    Article  Google Scholar 

  36. Chen XM, Li Y. A-and B site cosubstituted Ba6–3xSm8+2xTi18O54 microwave dielectric ceramics. J Am Ceram Soc 2002, 85: 579–584.

    Article  Google Scholar 

Download references

Acknowledgements

Financial supports of the National Natural Science Foundation of China (Grant No. 11464006) and the Middle-aged and Young Teachers in Colleges and/or Universities in Guangxi Basic Ability Promotion Project of China (Grant No. KY2016YB534) are gratefully acknowledged by the authors.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fei Liu.

Additional information

This article is published with open access at Springerlink.com

Rights and permissions

Open Access The articles published in this journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Liu, X., Liu, F. et al. Microstructures and microwave dielectric properties of (Ba1−xSrx)4(Sm0.4Nd0.6)28/3Ti18O54 solid solutions. J Adv Ceram 6, 50–58 (2017). https://doi.org/10.1007/s40145-016-0217-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40145-016-0217-x

Keywords

  • tungsten bronze type
  • high permittivity
  • microwave dielectric properties