Wersing W. Microwave ceramics for resonators and filters. Current Opinion in Solid State and Materials Science 1996, 1: 715–731.
Article
Google Scholar
Bolton RL. Temperature compensating ceramic capacitors in the system barium-rare earth oxide titania. Ph.D. Thesis. The University of Illinois, 1968.
Google Scholar
Sremoolanathan H, Sebastian MT, Pezholil M. Dielectric resonators in BaO–Ln2O3–5TiO2 system (Ln = La, Pr, Nd, Sm). British Ceramic Transactions 1996, 95: 79–81.
Google Scholar
Ohsato H. Science of tungstenbronze-type like Ba6–3xR8+2xTi18O54 (R = rare earth) microwave dielectric solid solutions. J Eur Ceram Soc 2001, 21: 2703–2711.
Article
Google Scholar
Valant M, Suvorov D, Rawn CJ. Intrinsic reasons for variations in dielectric properties of Ba6-3xR8+2xTi18O54 (R = LA–Gd) solid solutions. Jpn J Appl Phys 1999, 38: 2820.
Article
Google Scholar
Varfolomeeva MB, Miranov AS. The synthesis and homogeneity ranges of the phases Ba6-3xR8+2xTi18O54. Russ J Inorg Chem 1988, 33: 607.
Google Scholar
Kolar D, Skapin SD, Suvorov D. Phase equlibria in the system BaO–TiO2–Gd2O3. Acta Chimica Slovenica 1999, 46: 193–202.
Google Scholar
Kolar D, Gaberšček S, Stadler Z, et al. High stability, low loss dielectrics in the system BaO–Nd2O3–TiO2–Bi2O3. Ferroelectrics 1980, 27: 269–272.
Article
Google Scholar
Ohsato H, Ohhashi T, Kato H, et al. Microwave dielectric properties and structure of the Ba6-3xR8+2xTi18O54 solid solutions. Jpn J Appl Phys 1995, 34: 187–191.
Article
Google Scholar
Yao X, Lin H, Zhao X, et al. Effects of Al2O3 addition on the microstructure and microwave dielectric properties of Ba4Nd9.33Ti18O54 ceramics. Ceram Int 2012, 38: 6723–6728.
Article
Google Scholar
Ohsato H, Mizuta M, Ikoma T, et al. Microwave dielectric properties of tungsten bronze-type Ba6-3xR8+2xTi18O54 (R = La, Pr, Nd and Sm) solid solutions. J Ceram Soc Jpn 1998, 106: 178–182.
Article
Google Scholar
Pei J, Yue Z, Zhao F, et al. Effects of silver doping on the sol–gel-derived Ba6-3xR8+2xTi18O54 microwave dielectric ceramics. J Am Ceram Soc 2007, 90: 3131–3137.
Article
Google Scholar
Ubic R, Reaney IM, Lee WE, et al. Properties of the microwave dielectric phase Ba6-3xR8+2xTi18O54. Ferroelectrics 1999, 228: 271–282.
Article
Google Scholar
Huang X, Zhang J, Wang W, et al. Effect of pH value on electromagnetic loss properties of Co–Zn ferrite prepared via coprecipitation method. J Magn Magn Mater 2016, 405: 36–41.
Article
Google Scholar
Huang X, Zhang J, Xiao S, et al. Unique electromagnetic properties of the zinc ferrite nanofiber. Mater Lett 2014, 124: 126–128.
Article
Google Scholar
Sebastian MT. Dielectric Materials for Wireless Communication. Elsevier, 2010.
Google Scholar
Nagatomo T, Otagiri T, Suzuki M, et al. Microwave dielectric properties and crystal structure of the tungstenbronze-type like (Ba1-αSrα)6(Nd1-βYβ)8Ti18O54 solid solutions. J Eur Ceram Soc 2006, 26: 1895–1898.
Article
Google Scholar
Zhu J, Kipkoech ER, Lu W. Effects of LnAlO3 (Ln = La, Nd, Sm) additives on the properties of Ba4.2Nd9.2Ti18O54 ceramics. J Eur Ceram Soc 2006, 26: 2027–2030.
Article
Google Scholar
Zheng H, Reaney IM, Muir D, et al. Effect of glass additions on the sintering and microwave properties of composite dielectric ceramics based on BaO–Ln2O3–TiO2 (Ln = Nd, La). J Eur Ceram Soc 2007, 27: 4479–4487.
Article
Google Scholar
Jacob KS, Satheesh R, Ratheesh R. Preparation and microwave characterization of BaNd2-xSmxTi4O12 (0 = x = 2) ceramics and their effect on the temperature coefficient of dielectric constant in polytetrafluoroethylene composites. Mater Res Bull 2009, 44: 2022–2026.
Article
Google Scholar
Xia H-T, Kuang X-J, Wang C-H, et al. Conductivity and dielectric loss of tungsten-bronze-type BaNd2Ti4O12 microwave ceramics. Acta Phys-Chim Sin 2011, 27: 2009–2014.
Google Scholar
Wu M-C, Hsieh M-K, Yen C-W, et al. Low sintering BaNd2Ti4O12 microwave ceramics prepared by CuO thin layer coated powder. J Eur Ceram Soc 2007, 27: 2835–2839.
Article
Google Scholar
Long M, Zhuang W, Tang B, et al. Microwave dielectric properties of Ba0.75Sr0.25(NdxBi1–x)2Ti4O12 solid solutions. Ceram–Silikáty 2011, 55: 373–377.
Google Scholar
Long M, Zhuang W, Tang B, et al. Effect of molar ratio of Nd/Bi on the microwave ceramic properties of Ba0.75Sr0.25(NdxBi1–x)2Ti4O12 microwave materials. Piezoelectrics & Acoustooptics 2012, 34: 106–109. (in Chinese)
Google Scholar
Zhang Y-D, Zhou D, Guo J, et al. Microwave dielectric properties of the (1–x)(Mg0.95Zn0.05)TiO3–x(Ca0.8Sm0.4/3) TiO3 temperature stable ceramics. Mater Lett 2014, 32: 200–202.
Google Scholar
Pang L-X, Zhou D, Cai C-L, et al. Infrared spectroscopy and microwave dielectric properties of ultra-low temperature firing (K0.5La0.5)MoO4 ceramics. Mater Lett 2013, 92: 36–38.
Article
Google Scholar
Zhou H, Liu X, Chen X, et al. Ba4LiNb3–xSbxO12: Phase evolution, microstructure and optimized microwave dielectric properties. Mater Lett 2013, 96: 199–202.
Article
Google Scholar
Wang X, Fu R, Chen X. Crystal structure and microwave dielectric properties of (Ba1-aSra)Sm2Ti4O12 solid solutions. J Mater Sci: Mater El 2016, 27: 11137–11141.
Google Scholar
Webhoffer A, Feltz A. Microwave dielectric properties of ceramics of the system Ba6–x(SmyNd1-y)8+2x/3Ti18O54. J Mater Sci Lett 1999, 18: 719–721.
Article
Google Scholar
Kagomiya I, Suzuki M, Kakimoto K, et al. Microwave dielectric properties of tungsten bronze type like (Ba1-aSra)6-3xR8+2xTi18O54 (R = Sm, Nd) solid solutions. J Eur Ceram Soc 2007, 27: 3059–3062.
Article
Google Scholar
Huang X, Chen Y, Yu J, et al. Fabrication and electromagnetic loss properties of Fe3O4 nanofibers. J Mater Sci: Mater El 2015, 26: 3474–3478.
Google Scholar
Huang X, Zhang J, Liu Z, et al. Facile preparation and microwave absorption properties of porous hollow BaFe12O19/CoFe2O4 composite microrods. J Alloys Compd 2015, 648: 1072–1075.
Article
Google Scholar
Melvin GJH, Ni Q-Q, Natsuki T. Electromagnetic wave absorption properties of barium titanate/carbon nanotube hybrid nanocomposites. J Alloys Compd 2014, 615: 84–90.
Article
Google Scholar
Zheng XH, Chen XM. Dielectric ceramics with tungsten bronze structure in BaO–Nd2O3–TiO2–Nb2O5 system. J Mater Res 2002, 17: 1664–1670.
Article
Google Scholar
Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst 1976, A32: 751–767.
Article
Google Scholar
Chen XM, Li Y. A-and B site cosubstituted Ba6–3xSm8+2xTi18O54 microwave dielectric ceramics. J Am Ceram Soc 2002, 85: 579–584.
Article
Google Scholar