Skip to main content

Production, characterization, and luminescent properties of Eu3+ doped yttrium niobate–tantalate films

Abstract

Monoclinic yttrium tantalate (M′-YTaO4, M′-YTO), and two different kinds of yttrium niobium-tantalate (M′-YTa0.85Nb0.15O4 (M′-YTNO) and Eu3+ doped M′-YTa0.85Nb0.15O4 (M′-YTNO:Eu3+)) were produced by sol–gel method and grown on single crystalline Si (100) substrate by spin coating approach. Structural properties and thermal behaviours of the films were characterized by means of X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and thermogravimetry and differential thermal analysis (TG–DTA). Systematic Steady-state photoluminescence and lifetime measurements in a series of yttrium niobium-tantalate with varying amounts of Eu3+ were presented. The photoluminescence spectra of the films exhibited strong blue (380–400 nm) and red (614 nm) emissions upon ultraviolet excitation. Emission intensities were strongly dependent on the host lattice composition and film morphology. 1.5% Eu3+ doped films exhibited the brightest luminescence and long lifetime extending to 1.22 ms when excited at 254 nm. To the best of our knowledge, this is the first attempt in the production of M′-YTO, M′-YTNO, and M′-YTNO:Eu3+ films on single crystalline Si (100) substrate via sol–gel spin coating.

References

  1. Pereira PFS, Matos MG, Ávila LR, et al. Red, green and blue (RGB) emission doped Y3Al5O12 (YAG) phosphors prepared by non-hydrolytic sol–gel route. J Lumin 2010, 130: 488–493.

    Article  Google Scholar 

  2. Huang H, Yan B. In situ sol–gel composition of multicomponent hybrid precursor to hexagon-like Zn2SiO4:Tb3+ microcrystalline phosphors with different silicate sources. Appl Surf Sci 2006, 252: 2967–2972.

    Article  Google Scholar 

  3. Blasse G, Grabmaier BC. Luminescent Materials. Springer Berlin Heidelberg, 1994.

    Book  Google Scholar 

  4. Brixner LH. New X-ray phosphors. Mater Chem Phys 1987, 16: 253–281.

    Article  Google Scholar 

  5. Sonoda M, Takano M, Miyahara J, et al. Computed radiography utilizing scanning laser stimulated luminescence. Radiology 1983, 148: 833–838.

    Article  Google Scholar 

  6. Curry TS, Dowdey JE, Murry RC. Christensen’s Physics of Diagnostic Radiology. Lippincott Williams & Wilkins, 1990.

    Google Scholar 

  7. Blasse G, Bril A. Photoluminescent efficiency of phosphors with electronic transitions in localized centers. J Electrochem Soc 1968, 115: 1067–1075.

    Article  Google Scholar 

  8. Maschio S, Bachiorrini A, Di Monte R, et al. Preparation and characterization of LaNbO4 from amorphous precursors. J Mater Sci 1995, 30: 5433–5437.

    Article  Google Scholar 

  9. Issler SL, Torardi CC. Solid state chemistry and luminescence of X-ray phosphors. J Alloys Compd 1995, 229: 54–65.

    Article  Google Scholar 

  10. Gu M, Xu X, Liu X, et al. Preparation and characterization of GdTaO4:Eu3+ sol–gel luminescence thin films. J Sol–Gel Sci Technol 2005, 35: 193–196.

    Article  Google Scholar 

  11. Ayvacikli M, Ege A, Ekdal E, et al. Radioluminescence study of rare earth doped some yttrium based phosphors. Opt Mater 2012, 34: 1958–1961.

    Article  Google Scholar 

  12. Popovici E-J, Nazarov M, Muresan L, et al. Synthesis and characterisation of terbium activated yttrium tantalate phosphor. J Alloys Compd 2010, 497: 201–209.

    Article  Google Scholar 

  13. Maillard P, Tessier F, Orhan E, et al. Thermal ammonolysis study of the rare-earth tantalates RTaO4. Chem Mater 2005, 17: 152–156.

    Article  Google Scholar 

  14. Gasparotto G, Nascimento NM, Cebim MA, et al. Effect of heat treatment on the generation of structural defects in LaTaO4 ceramics and their correlation with photoluminescent properties. J Alloys Compd 2011, 509: 9076–9078.

    Article  Google Scholar 

  15. Brixner LH, Chen H-y. On the structural and luminescent properties of the M' LnTaO4 rare earth tantalates. J Electrochem Soc 1983, 130: 2435–2443.

    Article  Google Scholar 

  16. Weitzel H, Schröcke H. Kristallstrukturverfeinerungen von Euxenit, Y(Nb0.5Ti0.5)2O6, und M-Fergusonit, YNbG4. Zeitschrift für Kristallographie 1980, 152: 69–82.

    Article  Google Scholar 

  17. Jehng JM, Wachs IE. Structural chemistry and Raman spectra of niobium oxides. Chem Mater 1991, 3: 100–107.

    Article  Google Scholar 

  18. Karsu EC, Popovici EJ, Ege A, et al. Luminescence study of some yttrium tantalate-based phosphors. J Lumin 2011, 131: 1052–1057.

    Article  Google Scholar 

  19. Arellano I, Nazarov M, Byeon CC, et al. Luminescence and structural properties of Y(Ta,Nb)O4:Eu3+,Tb3+ phosphors. Mater Chem Phys 2010, 119: 48–51.

    Article  Google Scholar 

  20. Hirata GA, McKittrick J, Avalos-Borja M, et al. Physical properties of Y2O3:Eu luminescent films grown by MOCVD and laser ablation. Appl Surf Sci 1997, 113–114: 509–514.

    Article  Google Scholar 

  21. Bae JS, Moon BK, Choi BC, et al. Photoluminescence behaviors in ZnGa2O4 thin film phosphors deposited by a pulsed laser ablation. Thin Solid Films 2003, 424: 291–295.

    Article  Google Scholar 

  22. Gonzalez-Ortega JA, Tejeda EM, Perea N, et al. White light emission from rare earth activated yttrium silicate nanocrystalline powders and thin films. Opt Mater 2005, 27: 1221–1227.

    Article  Google Scholar 

  23. Bae JS, Kim SB, Jeong JH, et al. Photoluminescence characteristics of Li-doped Y2O3:Eu3+ thin film phosphors. Thin Solid Films 2005, 471: 224–229.

    Article  Google Scholar 

  24. Bae JS, Shim KS, Kim SB, et al. Photoluminescence characteristics of pulsed laser deposited Y2-xGdxO3:Eu3+ thin film phosphors. J Cryst Growth 2004, 264: 290–296.

    Article  Google Scholar 

  25. Kim SS, Moon JH, Lee B-T, et al. Microstructures of pulsed laser deposited Eu doped Y2O3 luminescent films on Si (001) substrates. Appl Surf Sci 2004, 221: 231–236.

    Article  Google Scholar 

  26. Mesaros A, Nasui M, Petrisor Jr. T, et al. Synthesis of YTaO4:Nb thin films by chemical solution deposition. J Alloys Compd 2012, 543: 221–226.

    Google Scholar 

  27. Mesaros-Hristea A, Alm O, Popovici E-J, et al. Luminescent thin films of nanocrystalline YTaO4:Nb by pulsed laser deposition. Thin Solid Films 2008, 516: 8431–8435.

    Article  Google Scholar 

  28. Hristea A, Popovici E-J, Muresan L, et al. Morpho-structural and luminescent investigations of niobium activated yttrium tantalate powders. J Alloys Compd 2009, 471: 524–529.

    Article  Google Scholar 

  29. Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst 1976, A32: 751–767.

    Article  Google Scholar 

  30. Lee CW, Park HK, Park S, et al. Ta-substituted SnNb2-xTaxO6 photocatalysts for hydrogen evolution under visible light irradiation. J Mater Chem A 2015, 3: 825–831.

    Article  Google Scholar 

  31. Wetherall KM, Doughty P, Mountjoy G, et al. The atomic structure of niobium and tantalum containing borophosphate glasses. J Phys: Condens Matter 2009, 21: 375106.

    Google Scholar 

  32. Demirci S, Öztürk B, Yildirim S, et al. Synthesis and comparison of the photocatalytic activities of flame spray pyrolysis and sol–gel derived magnesium oxide nano-scale particles. Mat Sci Semicon Proc 2015, 34: 154–161.

    Article  Google Scholar 

  33. Marwoto P, Sugianto S, Wibowo E. Growth of europium-doped gallium oxide (Ga2O3:Eu) thin films deposited by homemade DC magnetron sputtering. J Theor Appl Phys 2012, 6: 17.

    Article  Google Scholar 

  34. Hristea A, Popovici EJ, Muresan L, et al. Yttrium-tantalate-based phosphors for X-ray intensifying screen. In Proceedings of ROMOPTO 2003: Seventh Conference on Optics. International Society for Optics and Photonics, 2004: 781–787.

    Google Scholar 

  35. Blasse G, Bril A. Luminescence phenomena in compounds with fergusonite structure. J Lumin 1970, 3: 109–131.

    Article  Google Scholar 

  36. Nazarov M. New Generation of Europium-and Terbium-Activated Phosphors: From Syntheses to Applications. CRC Press, 2011.

    Google Scholar 

  37. Nazarov MV, Zamoryanskaya MV, Popovici E-J, et al. Luminescence of calcium tungstate phosphors doped with europium and terbium. J Mold Phys Sci 2003, 2: 68–79.

    Google Scholar 

Download references

Acknowledgements

This research was fully supported by Scientific and Technical Research Council of Turkey (TUBITAK) under Project No. SBAG-113S069.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Serdar Yildirim.

Additional information

This article is published with open access at Springerlink.com

Rights and permissions

Open Access The articles published in this journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yildirim, S., Demirci, S., Ertekin, K. et al. Production, characterization, and luminescent properties of Eu3+ doped yttrium niobate–tantalate films. J Adv Ceram 6, 33–42 (2017). https://doi.org/10.1007/s40145-016-0215-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40145-016-0215-z

Keywords

  • yttrium tantalate
  • sol–gel
  • photoluminescence
  • lifetime
  • Eu doped