Journal of Advanced Ceramics

, Volume 5, Issue 4, pp 344–355 | Cite as

Synthesis of Y3Al5O12:Eu and Y3Al5O12:Eu,Si phosphors by combustion method: Comparative investigations on the structural and spectral properties

  • Manisha Upasani
Open Access
Research Article


This paper reports the comparative investigations of the structural and spectral properties of Y3Al5O12:Eu3+ (YAG:Eu) and Y3Al5O12:Eu3+,Si4+ (YAG:Eu,Si) phosphors synthesized by combustion method at low temperature. A pure phase was identified for the YAG:Eu phosphor with a suitable amount of SiO2. Rietveld refinement and analytical calculation of different structural parameters were performed to get the idea about the SiO2 substitution in YAG:Eu. The characteristic red luminescence corresponding to Eu3+ transitions was observed after irradiation with ultra violet (UV) light and enhanced with SiO2 addition. Jorgensen formula and nephelauxetic ratio were used to understand the ligand behavior of Eu–O bond in YAG doped phosphor. The Judd–Ofelt intensity parameters and color properties of the phosphors were determined in detail. An efficient synthesis method for YAG:Eu phosphor, compatible for industrial applications, was proposed.


yttrium aluminum garnet (Y3Al5O12 YAG) light emitting diode (LED) red phosphor combustion synthesis 


  1. [1]
    Mishra K, Singh SK, Singh AK, et al. New perspective in garnet phosphor: Low temperature synthesis, nanostructures, and observation of multimodal luminescence. Inorg Chem 2014, 53: 9561–9569.CrossRefGoogle Scholar
  2. [2]
    Yang H, Kim Y-S. Energy transfer-based spectral properties of Tb-, Pr-, or Sm-codoped YAG:Ce nanocrystalline phosphors. J Lumin 2008, 128: 1570–1576.CrossRefGoogle Scholar
  3. [3]
    Potdevin A, Chadeyron G, Boyer D, et al. Sol–gel based YAG:Tb3+ or Eu3+ phosphors for application in lighting sources. J Phys D: Appl Phys 2005, 38: 3251–3260.CrossRefGoogle Scholar
  4. [4]
    Wang L, Zhang L, Fan Y, et al. Synthesis of Nd/Si codoped YAG powders via a solvothermal method. J Am Ceram Soc 2006, 89: 3570–3572.CrossRefGoogle Scholar
  5. [5]
    Blasse G. Energy transfer in oxidic phosphors. Phys Lett A 1968, 28: 444–445.CrossRefGoogle Scholar
  6. [6]
    Zhang N, Guo C, Jing H. Photoluminescence and cathodeluminescence of Eu3+-doped NaLnTiO4 (Ln = Gd and Y) phosphors. RSC Adv 2013, 3: 7495–7502.CrossRefGoogle Scholar
  7. [7]
    Yang HK, Chung JW, Moon BK, et al. Photoluminescence investigations of YAG:Eu nanocomposite powder by high-energy ball milling. Curr Appl Phys 2009, 9: e86–e88.CrossRefGoogle Scholar
  8. [8]
    Uhlich D, Huppertz P, Wiechert DU, et al. Preparation and characterization of nanoscale lutetium aluminium garnet (LuAG) powders doped by Eu3+. Opt Mater 2007, 29: 1505–1509.CrossRefGoogle Scholar
  9. [9]
    Kim JS, Choi BC, Yang HK, et al. Low-frequency dielectric dispersion and electrical conductivity of pure and La-doped SrBi2Nb2O9 ceramics. J Korean Phys Soc 2008, 52: 415.CrossRefGoogle Scholar
  10. [10]
    Lu C-H, Huang C-H, Cheng B-M. Synthesis and luminescence properties of microemulsion-derived Y3Al5O12:Eu3+ phosphors. J Alloys Compd 2009, 473: 376–381.CrossRefGoogle Scholar
  11. [11]
    Upasani M, Butey B, Moharil SV. Photoluminescence study of rare earth doped yttrium aluminum garnet— YAG:RE (RE: Eu3+, Pr3+ and Tb3+). Optik 2016, 127: 2004–2006.CrossRefGoogle Scholar
  12. [12]
    Upasani M, Butey B, Moharil S. Synthesis, characterization and optical properties of Y3Al5O12:Ce phosphor by mixed fuel combustion synthesis. J Alloys Compd 2015, 650: 858–862.CrossRefGoogle Scholar
  13. [13]
    Upasani M, Butey B, Moharil SV. Luminescence studies on lanthanide ions (Gd3+,Tb3+) doped YAG:Ce phosphors by combustion synthesis. IOSR-JAP 2014, 6: 28–33.CrossRefGoogle Scholar
  14. [14]
    Kingsley JJ, Manickam N, Patil KC. Combustion synthesis and properties of fine particle fluorescent aluminous oxides. Bull Mater Sci 1990, 13: 179–189.CrossRefGoogle Scholar
  15. [15]
    Kang YC, Lenngoro IW, Park SB, et al. YAG:Ce phosphor particles prepared by ultrasonic spray pyrolysis. Mater Res Bull 2000, 35: 789–798.CrossRefGoogle Scholar
  16. [16]
    Lee S-K, Yoon H-H, Park S-J, et al. Photoluminescence characteristics of Y3Al5O12:Ce3+ phosphors synthesized using the combustion method with various reagents. Jpn J Appl Phys 2007, 46: 7983–7986.CrossRefGoogle Scholar
  17. [17]
    Scherrer P. Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgensrahlen (determination of the size and internal structure of colloidal particles using X-rays). Nachr Ges Wiss Goettingen Math-Phys Kl 1918: 98–100. (in German)Google Scholar
  18. [18]
    Williamson GK, Hall WH. X-ray line broadening from filed aluminium and wolfram. Acta Metall 1953, 1: 22–31.CrossRefGoogle Scholar
  19. [19]
    Cullity BD. Elements of X-ray Diffraction. Reading, Massachusetts, USA: Addison-Wesley Publishing Company, 1956.Google Scholar
  20. [20]
    Rietveld HM. A profile refinement method for nuclear and magnetic structures. J Appl Cryst 1969, 2: 65–71.CrossRefGoogle Scholar
  21. [21]
    Crystal Impact. Match! Available at Scholar
  22. [22]
    Galasso FS. Structure and Properties of Inorganic Solids: International Series of Monographs in Solid State Physics. New York: Pergamon, 1970: 244.Google Scholar
  23. [23]
    Nien Y-T, Chen K-M, Chen I-G, et al. Photoluminescence enhancement of Y3Al5O12:Ce nanoparticles using HMDS. J Am Ceram Soc 2008, 91: 3599–3602.CrossRefGoogle Scholar
  24. [24]
    Yang M, Sui Y, Mu H, et al. Mechanism of upconversion emission enhancement in Y3Al5O12:Er3+/Li+ powders. J Rare Earth 2011, 29: 1022–1025.CrossRefGoogle Scholar
  25. [25]
    Muliuoliene I, Mathur S, Jasaitis D, et al. Evidence of the formation of mixed-metal garnets via sol–gel synthesis. Opt Mater 2003, 22: 241–250.CrossRefGoogle Scholar
  26. [26]
    Zhou Y, Lin J, Yu M, et al. Synthesis-dependent luminescence properties of Y3Al5O12:Re3+ (Re = Ce, Sm, Tb) phosphors. Mater Lett 2002, 56: 628–636.CrossRefGoogle Scholar
  27. [27]
    Yamase T, Kobayashi T, Sugeta M, et al. Europium(III) luminescence and intramolecular energy transfer studies of polyoxometalloeuropates. J Phys Chem A 1997, 101: 5046–5053.CrossRefGoogle Scholar
  28. [28]
    Reisfeld R, Jørgensen CK. Lasers and Excited States of Rare Earth. Springer-Verlag Berlin Heidelberg, 1977.CrossRefGoogle Scholar
  29. [29]
    Sathyanarayana DN. Electronic Absorption Spectroscopy and Related Techniques. New Delhi, India: Universities Press India Limited, 2001: 109.Google Scholar
  30. [30]
    Jorgensen C. Orbitals in Atoms and Molecules. London: Academic Press, 1962.Google Scholar
  31. [31]
    Sinha SP. Spectroscopic investigations of some neodymium complexes. Spectrochim Acta 1966, 22: 57–62.CrossRefGoogle Scholar
  32. [32]
    Boyer D, Bertrand-Chadeyron G, Mahiou R. Structural and optical characterizations of YAG:Eu3+ elaborated by the sol–gel process. Opt Mater 2004, 26: 101–105.CrossRefGoogle Scholar
  33. [33]
    Forest H, Ban G. Evidence for Eu+3 emission from two symmetry sites in Y2O3:Eu+3. J Electrochem Soc 1969, 116: 474–478.CrossRefGoogle Scholar
  34. [34]
    Dexter DL. A theory of sensitized luminescence in solids. J Chem Phys 1953, 21: 836–850.CrossRefGoogle Scholar
  35. [35]
    Van Uitert LG, Johnson LF. Energy transfer between rare-earth ions. J Chem Phys 1966, 44: 3514–3527.CrossRefGoogle Scholar
  36. [36]
    Judd BR. Optical absorption intensities of rare-earth ions. Phys Rev 1962, 127: 750–761.CrossRefGoogle Scholar
  37. [37]
    Ofelt GS. Intensities of crystal spectra of rare-earth ions. J Chem Phys 1962, 37: 511–520.CrossRefGoogle Scholar
  38. [38]
    Carnall WT, Fields PR, Rajnak K. Electronic energy levels of the trivalent lanthanide aquo ions.IV.Eu3+. J Chem Phys 1968, 49: 4450–4455.CrossRefGoogle Scholar
  39. [39]
    Kodaira CA, Brito HF, Malta OL, et al. Luminescence and energy transfer of the europium (III) tungstate obtained via the Pechini method. J Lumin 2003, 101: 11–21.CrossRefGoogle Scholar
  40. [40]
    Boyer JC, Vetrone F, Capobianco JA, et al. Variation of fluorescence lifetimes and Judd–Ofelt parameters between Eu3+ doped bulk and nanocrystalline cubic Lu2O3. J Phys Chem B 2004, 108: 20137–20143.CrossRefGoogle Scholar
  41. [41]
    Bednakiewicz A, Mech A, Karbowiak M, et al. Spectral properties of Eu3+ doped NaGdF4 nanocrystals. J Lumin 2005, 114: 247–254.CrossRefGoogle Scholar
  42. [42]
    Babu P, Jayasankar CK. Optical spectroscopy of Eu3+ ions in lithium borate and lithium fluoroborate glasses. Physica B 2000, 279: 262–281.CrossRefGoogle Scholar
  43. [43]
    Fang Y-C, Chu S-Y, Kao P-C, et al. Energy transfer and thermal quenching behaviors of CaLa2(MoO4)4:Sm3+,Eu3+ red phosphors. J Electrochem Soc 2011, 158: J1–J5.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Gmbh 2016

Open Access The articles published in this journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of PhysicsRashtrasant Tukadoji Maharaj Nagpur UniversityNagpurIndia

Personalised recommendations