Journal of Advanced Ceramics

, Volume 5, Issue 1, pp 84–92 | Cite as

Structural, dielectric, and electrical properties of lithium niobate microfibers

  • Cícero Rafael CenaEmail author
  • Ajay Kumar Behera
  • Banarji Behera
Open Access
Research Article


Lithium niobate (LiNbO3) fibers, obtained from the heat treatment of composite fibers (polymer/inorganic precursors), were successfully prepared by using the blow-spinning technique. A chemical solution containing Li and Nb ions, added to poly(vinyl pyrrolidone) solution, was used as precursor solution. The best condition for producing composite fibers was determined. The morphology of green and crystallized fibers was characterized by scanning electron microscopy (SEM) and revealed fibrous structure with an average diameter around 800 nm. X-ray diffraction (XRD) measurement revealed a pure LiNbO3 (LN) phase formation. Detailed studies of dielectric response at various frequencies and temperatures exhibited a dielectric anomaly at 364 ℃. The electrical properties (impedance, modulus, and conductivity) of the fibers were studied using impedance spectroscopy technique. The contributions of grain and grain boundary effects were observed in the LN fibers. The activation energy of the composite fibers was found to be 1.5 eV in the high temperature region (325–400 ℃).


ceramics fibers composites chemical synthesis impedance spectroscopy dielectric properties 


  1. [1]
    Dai Y, Liu W, Formo E, et al. Ceramic nanofibers fabricated by electrospinning and their applications in catalysis, environmental science, and energy technology. Polym Adv Technol 2011, 22: 326–338.CrossRefGoogle Scholar
  2. [2]
    Sigmund W, Yuh J, Park H, et al. Processing and structure relationships electrospinning of ceramic fiber systems. J Am Ceram Soc 2006, 89: 395–407.CrossRefGoogle Scholar
  3. [3]
    Medeiros ES, Glenn GM, Klamczynski AP, et al. Solution blow spinning: A new method to produce micro- and nanofibers from polymer solutions. J Appl Polym Sci 2009, 113: 2322–2330.CrossRefGoogle Scholar
  4. [4]
    Bhardwaj N, Kundu SC. Electrospinning: A fascinating fiber fabrication technique. Biotechnol Adv 2010, 28: 325–347.CrossRefGoogle Scholar
  5. [5]
    Oliveira JE, Moraes EA, Costa RGF, et al. Nano and submicrometric fibers of poly(D,L-lactide) obtained by solution blow spinning: Process and solution variables. J Appl Polym Sci 2011, 122: 3396–3405.CrossRefGoogle Scholar
  6. [6]
    Yuh J, Nino JC, Sigmund WM. Synthesis of barium titanate (BaTiO3) nanofibers via electrospinning. Mater Lett 2005, 59: 3645–3647.CrossRefGoogle Scholar
  7. [7]
    Alkoy EM, Dagdeviren C, Papila M. Processing conditions and aging effect on the morphology of PZT electrospun nanofibers, and dielectric properties of the resulting 3-3 PZT/polymer composite. J Am Ceram Soc 2009, 92: 2566–2570.CrossRefGoogle Scholar
  8. [8]
    Maensiri S, Nuansing W, Klinkaewnarong J, et al. Nanofibers of barium strontium titanate (BST) by sol–gel processing and electrospinning. J Colloid Interface Sci 2006, 297: 578–583.CrossRefGoogle Scholar
  9. [9]
    Li D, Xia Y. Fabrication of titania nanofibers by electrospinning. Nano Lett 2003, 3: 555–560.CrossRefGoogle Scholar
  10. [10]
    Bartasyte A, Plausinaitiene V, Abrutis A, et al. Identification of LiNbO3, LiNb3O8 and Li3NbO4 phases in thin films synthesized with different deposition techniques by means of XRD and Raman spectroscopy. J Phys Condens Matter 2013, 25: 205901.CrossRefGoogle Scholar
  11. [11]
    Díaz-Moreno C, Farias R, Hurtado-Macias A, et al. Multiferroic response of nanocrystalline lithium niobate. J Appl Phys 2012, 111: 07D907.CrossRefGoogle Scholar
  12. [12]
    Azaroff LV, Buerguer MJ. The Powder Method in X-ray Crystallography. New York: McGran-Hill, 1958.Google Scholar
  13. [13]
    Jeong I-K, Park S. Correlated thermal motion in ferroelectric LiNbO3 studied using neutron total scattering and a Rietveld analysis. J Korean Phys Soc 2011, 59: 2756.CrossRefGoogle Scholar
  14. [14]
    Fong H, Chun I, Reneker DH. Beaded nanofibers formed during electrospinning. Polymer 1999, 40: 4585–4592.CrossRefGoogle Scholar
  15. [15]
    Anderson JC. Dielectrics. London: Chapman & Hall, 1964.Google Scholar
  16. [16]
    Lidorenko NS, Zil’bervarg VE, Nagaev EL. Dielectric constants of solid eletrolytes and transition to superionic state. Sov Phys JETP 1980, 51: 89–93.Google Scholar
  17. [17]
    Khatri P, Behera B, Srinivas V, et al. Structural and dielectric properties of Ba3V2O8 ceramics. Curr Appl Phys 2009, 9: 515–519.CrossRefGoogle Scholar
  18. [18]
    Macdonald JR. Impedance Spectroscopy. New York: Wiley, 1987.Google Scholar
  19. [19]
    Jawahar K, Behera B, Choudhary RNP. Dielectric and impedance properties of Nd3/2Bi3/2Fe5O12 ceramics. J Mater Sci: Mater Electron 2009, 20: 872–878.Google Scholar
  20. [20]
    Sinclair DC, West AR. Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J Appl Phys 1989, 66: 3850.CrossRefGoogle Scholar
  21. [21]
    Satpathy S, Mohanty N, Behera A, et al. Dielectric and electrical properties of 0.5(BiGd0.05Fe0.95O3)–0.5(PbZrO3) composite. Mater Sci-Poland 2014, 32: 59–65.CrossRefGoogle Scholar
  22. [22]
    Behera AK, Mohanty NK, Satpathy SK, et al. Investigation of complex impedance and modulus properties of Nd doped 0.5BiFeO3–0.5PbTiO3 multiferroic composites. Cent Eur J Phys 2014, 12: 851–861.Google Scholar
  23. [23]
    Plcharski J, Weiczorek W. PEO based composite solid electrolyte containing nasicon. Solid State Ionics 1988, 28–30: 979–982.CrossRefGoogle Scholar
  24. [24]
    Provenzano V, Boesch LP, Volterra V, et al. Electrical relaxation in Na23SiO2 glass. J Am Ceram Soc 1972, 55: 492–496.CrossRefGoogle Scholar
  25. [25]
    Jain H, Hsieh CH. ‘Window’ effect in the analysis of frequency dependence of ionic conductivity. J Non-Cryst Solids 1994, 172–174: 1408–1412.CrossRefGoogle Scholar
  26. [26]
    Sen S, Pramanik P, Choudhary RNP. Impedance spectroscopy study of the nanocrystalline ferroelectric (PbMg)(ZrTi)O3 system. Appl Phys A 2006, 82: 549–557.CrossRefGoogle Scholar
  27. [27]
    Réau J-M, Simon A, Omari ME, et al. Impedance spectroscopy analysis of Pb5Al3F19. J Eur Ceram Soc 1999, 19: 777–779.CrossRefGoogle Scholar
  28. [28]
    Choudhary RNP, Pradhan DK, Tirado CM, et al. Impedance characteristics of Pb(Fe2/3W1/3)O3–BiFeO3 composites. Phys Status Solidi b 2007, 244: 2254–2266.CrossRefGoogle Scholar
  29. [29]
    Behera B, Nayak P, Choudhary RNP. Study of complex impedance spectroscopic properties of LiBa2Nb5O15 ceramics. Mater Chem Phys 2007, 106: 193–197.CrossRefGoogle Scholar
  30. [30]
    Borsa F, Torgeson DR, Martin SW, et al. Relaxation and fluctuations in glassy fast-ion conductors: Wide-frequencyrange NMR and conductivity measurements. Phys Rev B 1992, 46:795–800.CrossRefGoogle Scholar
  31. [31]
    Elliott SR. Use of the modulus formalism in the analysis of ac conductivity data for ionic glasses. J Non-Cryst Solids 1994, 170: 97–100.CrossRefGoogle Scholar
  32. [32]
    Jonscher AK. The ‘universal’ dielectric response. Nature 1977, 267: 673–679.CrossRefGoogle Scholar
  33. [33]
    Funke K. Jump relaxation in solid electrolytes. Prog Solid State Ch 1993, 22: 111–195.CrossRefGoogle Scholar
  34. [34]
    Sakellis I, Papathanassiou AN, Grammatikakis J. Transformation of polarons to bipolarons in disordered matter. Appl Phys Lett 2008, 92: 222108.CrossRefGoogle Scholar
  35. [35]
    Mahamoud H, Louati B, Hlel F, et al. Conductivity and dielectric studies on Na0.4Ag0.6)2PbP2O7 compound. Bull Mater Sci 2011, 34: 1069–1075.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Cícero Rafael Cena
    • 1
    Email author
  • Ajay Kumar Behera
    • 2
  • Banarji Behera
    • 2
  1. 1.UFMS—Federal University of Mato Grosso do SulCampo Grande-MSBrazil
  2. 2.School of PhysicsSambalpur UniversityJyotiVihar, BurlaIndia

Personalised recommendations