Skip to main content

Effect of sintering temperature on thermoelectric properties of CdO ceramics

Abstract

The effect of sintering temperature on thermoelectric properties of CdO ceramics was investigated by solid-state reaction method within the temperature range of 700–1000°C. With the increase of sintering temperature, both the grain size and the carrier concentration of these samples increased, while the Seebeck coefficient decreased. The highest dimensionless figure of merit ZT, 0.34, was obtained at 1023 K for the sample sintered at 800°C, suggesting the potential application of CdO ceramics in thermoelectric (TE) devices.

References

  1. Koumoto K, Wang Y, Zhang R, et al. Oxide thermoelectric materials: A nanostructuring approach. Annu Rev Mater Res 2010, 40: 363–394.

    Article  Google Scholar 

  2. Fergus JW. Oxide materials for high temperature thermoelectric energy conversion. J Eur Ceram Soc 2012, 32: 525–540.

    Article  Google Scholar 

  3. Terasaki I, Sasago Y, Uchinokura K. Large thermoelectric power in NaCo2O4 single crystals. Phys Rev B 1997, 56: R12658.

    Article  Google Scholar 

  4. Yin LH, Ang R, Huang ZH, et al. Exotic reinforcement of thermoelectric power driven by Ca doping in layered Bi2Sr2-x Ca x Co2Oy. Appl Phys Lett 2013, 102: 141907.

    Article  Google Scholar 

  5. Ohta H, Kim S, Mune Y, et al. Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nat Mater 2007, 6: 129–134.

    Article  Google Scholar 

  6. Wang HC, Wang CL, Su WB, et al. Doping effect of La and Dy on thermoelectric properties of SrTiO3. J Am Ceram Soc 2011, 94: 838–842.

    Article  Google Scholar 

  7. Lee S, Bock JA, Trolier-McKinstry S, et al. Ferroelectric-thermoelectricity and Mott transition of ferroelectric oxides with high electronic conductivity. J Eur Ceram Soc 2012, 32: 3971–3988.

    Article  Google Scholar 

  8. Liu Y, Zhao L-D, Liu Y, et al. Remarkable enhancement in thermoelectric performance of BiCuSeO by Cu deficiencies. J Am Chem Soc 2012, 134: 3312.

    Article  Google Scholar 

  9. Kitagawa H, Kunisada T, Yamada Y, et al. Effect of boron-doping on thermoelectric properties of rutile-type titanium dioxide sintered materials. J Alloys Compd 2010, 508: 582–586.

    Article  Google Scholar 

  10. Ohtaki M, Araki K, Yamamoto K. High thermoelectric performance of dually doped ZnO ceramics. J Electron Mater 2009, 38: 1234–1238.

    Article  Google Scholar 

  11. Teranishi T, Mori Y, Hayashi H, et al. Thermoelectric property of polycrystalline aluminum-doped zinc oxide enhanced by micropore foaming. J Am Ceram Soc 2012, 95: 690–695.

    Article  Google Scholar 

  12. Jood P, Mehta RJ, Zhang Y, et al. Al-doped zinc oxide nanocomposites with enhanced thermoelectric properties. Nano Lett 2011, 11: 4337–4342.

    Article  Google Scholar 

  13. Park K, Seong JK, Kim GH. NiO added Zn1-x Ni x O (0 ≤ x ≤ 0.05) for thermoelectric power generation. J Alloys Compd 2009, 473: 423–427.

    Article  Google Scholar 

  14. Bérardan D, Guilmeau E, Maignan A, et al. In2O3:Ge, a promising n-type themoelectric oxide composite. Solid State Commun 2008, 146: 97–101.

    Article  Google Scholar 

  15. Liu Y, Lin Y-H, Lan J, et al. Effect of transition-metal cobalt doping on the thermoelectric performance of In2O3 ceramics. J Am Ceram Soc 2010, 93: 2938–2941.

    Article  Google Scholar 

  16. Koffyberg FP. Thermoreflectance spectra of CdO: Band gaps and band-population effects. Phys Rev B 1976, 13: 4470.

    Article  Google Scholar 

  17. Koffyberg FP. Electron concentration and mobility in semimetallic CdO. Can J Phys 1971, 49: 435–440.

    Article  Google Scholar 

  18. Madelung O, Rössler U, Schulz M. II–VI and I–VII Compounds; Semimagnetic Compounds. Berlin Heidelberg: Springer-Verlag, 1999, 41B: 1–5.

    Google Scholar 

  19. Wang S, Liu F, Lü Q, et al. The effect of Er3+ doping on the structure and thermoelectric properties of CdO ceramics. J Eur Ceram Soc 2013, 33: 1763–1768.

    Article  Google Scholar 

  20. Wang S, Lü Q, Li L, et al. High-temperature thermoelectric properties of Cd1-x Pr x O ceramics. Scripta Mater 2013, 69: 533–536.

    Article  Google Scholar 

  21. Lü Q, Wang SF, Li LJ, et al. Electrical and thermal transport properties of CdO ceramics. Science China Physics, Mechanics & Astronomy 2014, 57: 1644–1647.

    Article  Google Scholar 

  22. Park K, Ko KY, Kim J-G, et al. Microstructure and high-temperature thermoelectric properties of CuO and NiO co-substituted NaCo2O4. Mat Sci Eng B 2006, 129: 200–206.

    Article  Google Scholar 

  23. Park K, Kim KK, Seong JK, et al. Improved thermoelectric properties by adding Al for Zn in (ZnO) m In2O3. Mater Lett 2007, 61: 4759–4762.

    Article  Google Scholar 

  24. Yan M, Lane M, Kannewurf CR, et al. Highly conductive epitaxial CdO thin films prepared by pulsed laser deposition. Appl Phys Lett 2001, 78: 2342.

    Article  Google Scholar 

  25. Kuznetsova LA, Kuznetsov VL, Rowe DM. Thermoelectric properties and crystal structure of ternary compounds in the Ge(Sn,Pb)Te–Bi2Te3 systems. J Phys Chem Solids 2000, 61: 1269–1274.

    Article  Google Scholar 

  26. Jung K-H, Lee KH, Seo W-S, et al. An enhancement of a thermoelectric power factor in a Ga-doped ZnO system: A chemical compression by enlarged Ga solubility. Appl Phys Lett 2012, 100: 253902.

    Article  Google Scholar 

  27. Mendelsberg RJ, Zhu Y, Anders A. Determining the nonparabolicity factor of the CdO conduction band using indium doping and the Drude theory. J Phys D: Appl Phys 2012, 45: 425302.

    Article  Google Scholar 

  28. Zhao L-D, Lo S-H, He J, et al. High performance thermoelectrics from earth-abundant materials: Enhanced figure of merit in PbS by second phase nanostructures. J Am Chem Soc 2011, 133: 20476–20487.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jianglong Wang.

Additional information

This article is published with open access at Springerlink.com

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Li, H. & Wang, J. Effect of sintering temperature on thermoelectric properties of CdO ceramics. J Adv Ceram 4, 226–231 (2015). https://doi.org/10.1007/s40145-015-0153-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40145-015-0153-1

Keywords

  • thermoelectric (TE)
  • CdO ceramics
  • sintering temperature
  • solid-state reaction