Skip to main content

Complex impedance and electric modulus studies of magnetic ceramic Ni0.27Cu0.10Zn0.63Fe2O4

Abstract

The electrical properties of Ni0.27Cu0.10Zn0.63Fe2O4 (NCZF) prepared from auto combustion synthesis of ferrite powders have been studied by impedance and modulus spectroscopy. We studied frequency and temperature dependencies of impedance and electric modulus of NCZF in a wide frequency range (20 Hz–5 MHz) at different measuring temperatures T SM (30–225°C). The complex impedance spectra clearly showed both grain and grain boundary effects on the electrical properties. The observed impedance spectra indicated that the magnitude of grain boundary resistance R gb becomes more prominent compared to grain resistance R b at room temperature, and with the increase in T SM, R gb decreases faster than the intrinsic R gb. The frequency response of the imaginary part of impedance showed relaxation behavior at every T SM, and the relaxation frequency variation with T SM appeared to be of Arrhenius nature and the activation energy has been estimated to be 0.37 eV. A complex modulus spectrum was used to understand the mechanism of the electrical transport process, which indicated that a non-Debye type of conductivity relaxation characterizes this material.

References

  1. [1]

    Chen Q, Du P, Huang W, et al. Ferrite with extraordinary electric and dielectric properties prepared from self-combustion technique. Appl Phys Lett 2007, 90: 132907.

    Article  Google Scholar 

  2. [2]

    Sugimoto M. The past, present, and future of ferrites. J Am Ceram Soc 1999, 82: 269–280.

    Article  Google Scholar 

  3. [3]

    Scott JF. Applications of modern ferroelectrics. Science 2007, 315: 954–959.

    Article  Google Scholar 

  4. [4]

    Chaouchi A, Marinel S, Aliouat M, et al. Low temperature sintering of ZnTiO3/TiO2 based dielectric with controlled temperature coefficient. J Eur Ceram Soc 2007, 27: 2561–2566.

    Article  Google Scholar 

  5. [5]

    Lee Y-C, Chiang C-S, Huang Y-L. Microwave dielectric properties and microstructures of Nb2O5–Zn0.95Mg0.05 TiO3 + 0.25TiO2 ceramics with Bi2O3 addition. J Eur Ceram Soc 2010, 30: 963–970.

    Article  Google Scholar 

  6. [6]

    Valenzuela R. Magnetic Ceramics. Edinburgh: Cambridge University Press, 1994.

    Book  Google Scholar 

  7. [7]

    Nam, JH, Jung HH, Shin JY, et al. The effect of Cu substitution on the electrical and magnetic properties of NiZn ferrites. IEEE T Magn 1995, 31: 3985–3987.

    Article  Google Scholar 

  8. [8]

    Hossain AKMA, Rahman ML. Enhancement of microstructure and initial permeability due to Cu substitution in Ni0.50-x Cu x Zn0.50Fe2O4 ferrites. J Magn Magn Mater 2011, 323: 1954–1962.

    Article  Google Scholar 

  9. [9]

    Kulikowski J. Soft magnetic ferrites—Development or stagnation? J Magn Magn Mater 1984, 41: 56–62.

    Article  Google Scholar 

  10. [10]

    Jones RE, Maniar PD, Moazzami R, et al}. Ferroelectric non-volatile memories for low-voltage, low-power applications. Thin Solid Films 1995, 270: 584–588.

    Article  Google Scholar 

  11. [11]

    Aruna ST, Mukasyan AS. Combustion synthesis and nanomaterials. Curr Opin Solid St M 2008, 12: 44–50.

    Article  Google Scholar 

  12. [12]

    Verma K, Kumar A, Varshney D. Dielectric relaxation behavior of A x Co1-x Fe2O4 (A = Zn, Mg) mixed ferrites. J Alloys Compd 2012, 526: 91–97.

    Article  Google Scholar 

  13. [13]

    Costa MM, Júnior PGFM, Sombra ASB. Dielectric and impedance properties’ studies of the lead doped (PbO)–Co2Y type hexaferrite (Ba2Co2Fe12O22(Co2Y)). Mater Chem Phys 2010, 123: 35–39.

    Article  Google Scholar 

  14. [14]

    Abdullah MH, Yusoff AN. Complex impedance and dielectric properties of an Mg–Zn ferrite. J Alloys Compd 1996, 233: 129–135.

    Article  Google Scholar 

  15. [15]

    MacDonald JR. Impedance Spectroscopy. New York: Wiley, 1987.

    Google Scholar 

  16. [16]

    Kumar A, Singh BP, Choudhary RNP, et al. Characterization of electrical properties of Pb-modified BaSnO3 using impedance spectroscopy. Mater Chem Phys 2006, 99: 150–159.

    Article  Google Scholar 

  17. [17]

    Behera B, Nayak P, Choudhary RNP. Impedance spectroscopy study of NaBa2V5O15 ceramic. J Alloys Compd 2007, 436: 226–232.

    Article  Google Scholar 

  18. [18]

    Plcharski J, Weiczorek W. PEO based composite solid electrolyte containing nasicon. Solid State Ionics 1988, 28–30: 979–982.

    Article  Google Scholar 

  19. [19]

    Nobre MAL, Lanfredi S. Dielectric properties of Bi3Zn2Sb3O14 ceramics at high temperature. Mater Lett 2001, 47: 362–366.

    Article  Google Scholar 

  20. [20]

    Jonscher AK. The ‘universal’ dielectric response. Nature 1977, 267: 673–679.

    Article  Google Scholar 

  21. [21]

    Ortega N, Kumar A, Bhattacharya P, et al. Impedance spectroscopy of multiferroic PbZr x Ti1-x O3/CoFe2O4 layered thin films. Phys Rev B 2008, 77: 014111.

    Article  Google Scholar 

  22. [22]

    Jamnik J, Maier J. Generalised equivalent circuits for mass and charge transport: Chemical capacitance and its implications. Phys Chem Phys 2001, 3: 1668–1678.

    Article  Google Scholar 

  23. [23]

    Rathan SV, Govindaraj G. Electrical relaxation studies on Na2NbMP3O12 (M = Zn, Cd, Pb and Cu) phosphate glasses. Mater Chem Phys 2010, 120: 255–262.

    Article  Google Scholar 

  24. [24]

    Peláiz-Barranco A, Gutiérrez-Amador MP, Huanosta A, et al. Phase transitions in ferrimagnetic and ferroelectric ceramics by AC measurements. Appl Phys Lett 1998, 73: 2039.

    Article  Google Scholar 

  25. [25]

    Roling B. Scaling properties of the conductivity spectra of glasses and supercooled melts. Solid State Ionics 1998, 105: 185–193.

    Article  Google Scholar 

  26. [26]

    McCrum NG, Read BE, Williams G. An Elastic and Dielectric Effects in Polymeric Solids. New York: Wiley, 1967.

    Google Scholar 

  27. [27]

    Liu J, Duan C-G, Yin W-G, et al. Dielectric permittivity and electric modulus in Bi2Ti4O11. J Chem Phys 2003, 119: 2812.

    Article  Google Scholar 

  28. [28]

    León C, Lucía ML, Santamaría J. Correlated ion hopping in single-crystal yttria-stabilized zirconia. Phys Rev B 1997, 55: 882.

    Article  Google Scholar 

  29. [29]

    Richert R, Wagner H. The dielectric modulus: Relaxation versus retardation. Solid State Ionics 1998, 105: 167–173.

    Article  Google Scholar 

  30. [30]

    Padmasree KP, Kanchan DK, Kulkami AR. Impedance and modulus studies of the solid electrolyte system 20CdI2–80[xAg2O–y(0.7V2O5–0.3B2O3)], where 1 ≤ x/y ≤ 3. Solid State Ionics 2006, 177: 475–482.

    Article  Google Scholar 

  31. [31]

    Chowdari BVR, Gopalkrishnnan R. AC conductivity analysis of glassy silver iodomolybdate system. Solid State Ionics 1987, 23: 225–233.

    Article  Google Scholar 

  32. [32]

    Barik SK, Mahapatra PK, Choudhary RNP. Structural and electrical properties of Na1/2La1/2TiO3 ceramics. Appl Phys A 2006, 85: 199–203.

    Article  Google Scholar 

  33. [33]

    Hou Z-L Cao M-S, Yuan J, et al. High-temperature conductance loss dominated defect level in h-BN: Experiments and first principles calculations. J Appl Phys 2009, 105: 076103.

  34. [34]

    Song W-L, Cao M-S, Hou Z-L, et al. High dielectric loss and its monotonic dependence of conducting-dominated multiwalled carbon nanotubes/silica nanocomposite on temperature ranging from 373 to 873 K in X-band. Appl Phys Lett 2009, 94: 233110.

    Article  Google Scholar 

  35. [35]

    Cao M-S, Hou Z-L, Yuan J, et al. Low dielectric loss and non-Debye relaxation of gamma-Y2Si2O7 ceramic at elevated temperature in X-band. J Appl Phys 2009, 105: 106102.

    Article  Google Scholar 

  36. [36]

    Cao M-S, Song W-L, Hou Z-L, et al. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 2010, 48: 788–796.

    Article  Google Scholar 

  37. [37]

    Ranjan R, Kumar R, Kumar N, et al. Impedance and electric modulus analysis of Sm-modified Pb(Zr0.55Ti0.45)1-x/4O3 ceramics. J Alloys Compd 2011, 509: 6388–6394.

    Article  Google Scholar 

  38. [38]

    Abo El Ata AM, El Hiti MA, El Nimr MK. Room temperature electric and dielectric properties of polycrystalline BaCo2x Zn x Fe12-2x O19. J Mater Sci Lett 1998, 17: 409–413.

    Article  Google Scholar 

  39. [39]

    Dutta S, Choudhary RNP, Sinha PK. Impedance spectroscopy studies on Fe3+ ion modified PLZT ceramics. Ceram Int 2007, 33: 13–20.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Belal Hossen.

Additional information

This article is published with open access at Springerlink.com

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Belal Hossen, M., Akther Hossain, A.K.M. Complex impedance and electric modulus studies of magnetic ceramic Ni0.27Cu0.10Zn0.63Fe2O4 . J Adv Ceram 4, 217–225 (2015). https://doi.org/10.1007/s40145-015-0152-2

Download citation

Keywords

  • ferrimagnetic ceramics
  • impedance spectroscopy
  • electric modulus
  • temperature dependence