Skip to main content

Thermal shock and fatigue behavior of pressureless sintered Al2O3–SiO2–ZrO2 composites


The thermal shock and fatigue behavior of pressureless sintered Al2O3–SiO2–ZrO2 (ASZ) composites was studied. The influence of the thermal shock and fatigue on the strengthening response of ASZ has been investigated by measuring the strength retention and microstructural changes. The magnitude of the flexural strength and fracture of the ASZ has been compared with that of the monolithic Al2O3 (A) and Al2O3–ZrO2 (AZ) composites under the same experimental conditions. Results indicated that the ASZ composites possess the highest resistance against thermal shock and fatigue, in comparison with A and AZ. The improvements were attributed to the enhancement in the fracture toughness of ASZ and the presence of multi-phase reinforcement.


  1. [1]

    Wang H, Singh RN. Thermal shock behaviour of ceramics and ceramic composites. Int Mater Rev 1994, 39: 228–244.

    Article  Google Scholar 

  2. [2]

    Mebrahitom Asmelash G, Mamat O. Processing and characterisation of Al2O3SiO2ZrO2 composite material. International Journal of Microstructure and Materials Properties 2012, 7: 64–76.

    Article  Google Scholar 

  3. [3]

    Shackelford JF, Doremus RH. Ceramic and Glass Materials: Structure, Properties and Processing. New York: Springer, 2008.

    Book  Google Scholar 

  4. [4]

    Manson SS. Behavior of materials under conditions of thermal stress. National Advisory Committee for Aeronautics (NACA) report 1170, 1953.

    Google Scholar 

  5. [5]

    Fahrenholtz WG, Ellerby DT, Loehman RE. Al2O3–Ni composites with high strength and fracture toughness. J Am Ceram Soc 2000, 83: 1279–1280.

    Article  Google Scholar 

  6. [6]

    Shi R, Li J, Wang D, et al. Mechanical properties and thermal shock resistance of Al2O3–TiC–Co composites. J Mater Eng Perform 2009, 18: 414–419.

    Article  Google Scholar 

  7. [7]

    Sbaizero O, Pezzotti G. Influence of molybdenum particles on thermal shock resistance of alumina matrix ceramics. Mat Sci Eng A 2003, 343: 273–281.

    Article  Google Scholar 

  8. [8]

    Wang Y, Liang J, Han W, et al. Mechanical properties and thermal shock behavior of hot-pressed ZrB2–SiC–AlN composites. J Alloys Compd 2009, 475: 762–765.

    Article  Google Scholar 

  9. [9]

    Zhang N, Zhao XJ, Ru HQ, et al. Thermal shock behavior of nano-sized ZrN particulate reinforced AlON composites. Ceram Int 2013, 39: 367–375.

    Article  Google Scholar 

  10. [10]

    Tian C, Liu N, Lu M. Thermal shock and thermal fatigue behavior of Si3N4–TiC nano-composites. Int J Refract Met H 2008, 26: 478–484.

    Article  Google Scholar 

  11. [11]

    Rendtorff NM, Garrido LB, Aglietti EF. Thermal shock resistance and fatigue of zircon–mullite composite materials. Ceram Int 2011, 37: 1427–1434.

    Article  Google Scholar 

  12. [12]

    Panda PK, Kannan TS, Dubois J, et al. Thermal shock and thermal fatigue study of alumina. J Eur Ceram Soc 2002, 22: 2187–2196.

    Article  Google Scholar 

  13. [13]

    Aksel C. The influence of zircon on the mechanical properties and thermal shock behaviour of slip-cast alumina–mullite refractories. Mater Lett 2002, 57: 992–997.

    Article  Google Scholar 

  14. [14]

    ASTM International. ASTM C1171-05 Standard test method for quantitatively measuring the effect of thermal shock and thermal cycling on refractories. West Conshohocken, PA: ASTM International, 2011.

  15. [15]

    Anstis GR, Chantikul P, Lawn BR, et al. A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements. J Am Ceram Soc 1981, 64: 533–538.

    Article  Google Scholar 

  16. [16]

    Mebrahitom Asmelash G, Mamat O, Ahmad F. Investigation on the effect of silica sand addition in densification of Al2O3–SiO2–ZrO2 composite. J Ceram Process Res 2013, 14: 22–26.

    Google Scholar 

  17. [17]

    Mebrahitom Asmelash G, Mamat O, Ahmad F. Toughening mechanisms of Al2O3–SiO2–ZrO2 composite materials. Ceram-Silikaty 2012, 56: 360–366.

    Google Scholar 

  18. [18]

    Mebrahitom Asmelash G, Mamat O. Pressureless sintering and characterization of Al2O3–SiO2–ZrO2 composite. Defect and Diffusion Forum 2012, 329: 113–128.

    Article  Google Scholar 

  19. [19]

    Zhang HB, Zhou YC, Bao YW, et al. Abnormal thermal shock behavior of Ti3SiC2 and Ti3AlC2. J Mater Res 2006, 21: 2401–2407.

    Article  Google Scholar 

  20. [20]

    Hasselman DPH. Unified theory of thermal shock fracture initiation and crack propagation in brittle ceramics. J Am Ceram Soc 1969, 52: 600–604.

    Article  Google Scholar 

  21. [21]

    Tancret F, Monot I, Osterstock F. Toughness and thermal shock resistance of YBa2Cu3O7-x composite superconductors containing Y2BaCuO5 or Ag particles. Mat Sci Eng A 2001, 298: 268–283.

    Article  Google Scholar 

  22. [22]

    Zhao XJ, Ru HQ, Chen DL, et al. Thermal shock behavior of nano-sized SiC particulate reinforced AlON composites. Mat Sci Eng B 2012, 177: 402–410.

    Article  Google Scholar 

  23. [23]

    Mezquita S, Uribe R, Moreno R, et al. Influence of mullite additions on thermal shock resistance of dense alumina materials. Part 2: Thermal properties and thermal shock behaviour. Adv Appl Ceram 2001, 100: 246–250.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to G. Mebrahitom Asmelash.

Additional information

This article is published with open access at

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mebrahitom Asmelash, G., Mamat, O., Ahmad, F. et al. Thermal shock and fatigue behavior of pressureless sintered Al2O3–SiO2–ZrO2 composites. J Adv Ceram 4, 190–198 (2015).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • ceramics
  • flexural strength
  • fracture toughness
  • pressureless sintering
  • thermal fatigue
  • thermal shock