Electrochemical performance of Ti3C2 supercapacitors in KOH electrolyte


Two-dimensional (2D) carbide Ti3C2 was synthesized by exfoliating Ti3AlC2 in HF solution and used for supercapacitive performance investigation in 3 M KOH electrolyte. The specific surface area (SSA) of as-synthesized Ti3C2 was 22.35 m2/g. Ti3C2-based supercapacitor electrodes exhibited good energy storage ability and had a volumetric capacitance 119.8 F/cm3 at the current density of 2.5 A/g. Moreover, the addition of carbon black into Ti3C2 powders greatly improved the performance of Ti3C2-based capacitors because carbon black restrained the preferred orientation of 2D Ti3C2, providing fast ion transport channels, and in turn, decreasing electrical resistance from 16.7 Ω to 3.5 Ω.


  1. [1]

    Chmiola J, Yushin G, Gogotsi Y, et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 2006, 313: 1760–1763.

    Article  Google Scholar 

  2. [2]

    Jänes A, Kurig H, Lust E. Characterisation of activated nanoporous carbon for supercapacitor electrode materials. Carbon 2007, 45: 1226–1233.

    Article  Google Scholar 

  3. [3]

    Xing W, Huang CC, Zhuo SP, et al. Hierarchical porous carbons with high performance for supercapacitor electrodes. Carbon 2009, 47: 1715–1722.

    Article  Google Scholar 

  4. [4]

    Torop J, Palmre V, Arulepp M, et al. Flexible supercapacitor-like actuator with carbide-derived carbon electrodes. Carbon 2011, 49: 3113–3119.

    Article  Google Scholar 

  5. [5]

    Chmiola J, Largeot C, Taberna P-L, et al. Monolithic carbide-derived carbon films for micro-supercapacitors. Science 2010, 328: 480–483.

    Article  Google Scholar 

  6. [6]

    Hsieh T-F, Chuang C-C, Chen W-J, et al. Hydrous ruthenium dioxide/multi-walled carbon-nanotube/titanium electrodes for supercapacitors. Carbon 2012, 50: 1740–1747.

    Article  Google Scholar 

  7. [7]

    Wang Q, Yan J, Wang Y, et al. Template synthesis of hollow carbon spheres anchored on carbon nanotubes for high rate performance supercapacitors. Carbon 2013, 52: 209–218.

    Article  Google Scholar 

  8. [8]

    Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science 2004, 306: 666–669.

    Article  Google Scholar 

  9. [9]

    Novoselov KS, Jiang D, Schedin F, et al. Two-dimensional atomic crystals. P Natl Acad Sci USA 2005, 102: 10451–10453.

    Article  Google Scholar 

  10. [10]

    Chang H-H, Chang C-K, Tsai Y-C, et al. Electrochemically synthesized graphene/polypyrrole composites and their use in supercapacitor. Carbon 2012, 50: 2331–2336.

    Article  Google Scholar 

  11. [11]

    Hu J, Kang Z, Li F, et al. Graphene with three-dimensional architecture for high performance supercapacitor. Carbon 2014, 67: 221–229.

    Article  Google Scholar 

  12. [12]

    Novoselov KS, Fal’ko VI, Colombo L, et al. A roadmap for graphene. Nature 2012, 490: 192–200.

    Article  Google Scholar 

  13. [13]

    Vivekchand SRC, Rout CS, Subrahmanyam KS, et al. Graphene-based electrochemical supercapacitors. J Chem Sci 2008, 120: 9–13.

    Article  Google Scholar 

  14. [14]

    Naguib M, Mashtalir O, Carle J, et al. Two-dimensional transition metal carbides. ACS Nano 2012, 6: 1322–1331.

    Article  Google Scholar 

  15. [15]

    Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 2011, 23: 4248–4253.

    Article  Google Scholar 

  16. [16]

    Barsoum MW. MAX Phases: Properties of Machinable Ternary Carbides and Nitrides. Weinheim, Germany: John Wiley & Sons, 2013.

    Google Scholar 

  17. [17]

    Sun ZM. Progress in research and development on MAX phases: A family of layered ternary compounds. Int Mater Rev 2011, 56: 143–166.

    Article  Google Scholar 

  18. [18]

    Hu Q, Sun D, Wu Q, et al. MXene: A new family of promising hydrogen storage medium. J Phys Chem A 2013, 117: 14253–14260.

    Article  Google Scholar 

  19. [19]

    Hu Q, Wang H, Wu Q, et al. Two-dimensional Sc2C: A reversible and high-capacity hydrogen storage material predicted by first-principles calculations. Int J Hydrogen Energ 2014, 39: 10606–10612.

    Article  Google Scholar 

  20. [20]

    Peng Q, Guo J, Zhang Q, et al. Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide. J Am Chem Soc 2014, 136: 4113–4116.

    Article  Google Scholar 

  21. [21]

    Gao Y, Wang L, Li Z, et al. Preparation of MXene-Cu2O nanocomposite and effect on thermal decomposition of ammonium perchlorate. Solid State Sci 2014, 35: 62–65.

    Article  Google Scholar 

  22. [22]

    Naguib M, Come J, Dyatkin B, et al. MXene: A promising transition metal carbide anode for lithium-ion batteries. Electrochem Commun 2012, 16: 61–64.

    Article  Google Scholar 

  23. [23]

    Tang Q, Zhou Z, Shen P. Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J Am Chem Soc 2012, 134: 16909–16916.

    Article  Google Scholar 

  24. [24]

    Sun D, Wang M, Li Z, et al. Two-dimensional Ti3C2 as anode material for Li-ion batteries. Electrochem Commun 2014, 47: 80–83.

    Article  Google Scholar 

  25. [25]

    Come J, Naguib M, Rozier P, et al. A non-aqueous asymmetric cell with a Ti2C-based two-dimensional negative electrode. J Electrochem Soc 2012, 159: A1368–A1373.

    Article  Google Scholar 

  26. [26]

    Lukatskaya MR, Mashtalir O, Ren CE, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 2013, 341: 1502–1505.

    Article  Google Scholar 

  27. [27]

    Dall’Agnese Y, Lukatskaya MR, Cook KM, et al. High capacitance of surface-modified 2D titanium carbide in acidic electrolyte. Electrochem Commun 2014, 48: 118–122.

    Article  Google Scholar 

  28. [28]

    Li L, Zhou A, Xu L, et al. Synthesis of high pure Ti3AlC2 and Ti2AlC powders from TiH2 powders as Ti source by tube furnace. J Wuhan Univ Technol 2013, 28: 882–887.

    Article  Google Scholar 

  29. [29]

    Murali S, Quarles N, Zhang LL, et al. Volumetric capacitance of compressed activated microwave-expanded graphite oxide (a-MEGO) electrodes. Nano Energy 2013, 2: 764–768.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Aiguo Zhou.

Additional information

This article is published with open access at Springerlink.com

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Wang, L., Li, Z. et al. Electrochemical performance of Ti3C2 supercapacitors in KOH electrolyte. J Adv Ceram 4, 130–134 (2015). https://doi.org/10.1007/s40145-015-0143-3

Download citation


  • MXene
  • Ti3AlC2
  • two-dimensional (2D) carbide
  • supercapacitors