Skip to main content

Frequency dependent electrical properties of Na2Pb2R2W2Ti4Nb4O30 (R = Nd, Sm) ceramics


In the present research work, frequency dependent electrical properties of tungsten bronze structured compounds Na2Pb2R2W2Ti4Nb4O30 (R = Nd, Sm) are reported. X-ray diffraction (XRD) study of polycrystalline ceramic samples confirms the formation of compounds with orthorhombic structure. Analysis of frequency dependent electrical data in the framework of modulus and conductivity formalism suggests the presence of thermally activated relaxation process in the compounds, which show Arrhenius behavior. The magnitudes of activation energies give the nature of the relaxing species. The real and imaginary parts of complex modulus trace the depressed semicircle in complex plane, suggesting non-Debye type relaxation process in the materials. The power law behavior of admittance data is successfully modeled by introducing constant phase element (CPE) to the equivalent circuit. A large value of power law parameter (n) of CPE below ferroelectric transition temperature (Tc) is attributed to the cooperative response of the dipoles which is reduced above Tc. This behavior is correlated with the frequency dependence of CPE, suggesting a physical meaning to it. The frequency dependent AC conductivity at different temperatures follows Jonscher’s universal power law. Almond and West formalism is used to estimate the hopping rate, activation enthalpy and charge carrier concentration in the materials.


  1. [1]

    Rubin JJ, Van Uitert LG, Levinstein HJ. The growth of single crystal niobates for electro-optic and non-linear applications. J Cryst Growth 1967, 1: 315–317.

    Article  Google Scholar 

  2. [2]

    Stenger CGF, Burggraaf AJ. Study of phase transitions and properties of tetragonal (Pb, La)(Zr, Ti)O3 ceramics—III: Transitions induced by electric fields. J Phys Chem Solids 1980, 41: 31–41.

    Article  Google Scholar 

  3. [3]

    Behera B, Nayak P, Choudhary RNP. Structural, dielectric and electrical properties of NaBa2X5O15 (X = Nb and Ta) ceramics. Mater Lett 2005, 59: 3489–3493.

    Article  Google Scholar 

  4. [4]

    Mohanty BB, Sahoo PS, Sahoo MPK, et al. Structural and electrical properties of Ba3Sr2GdTi3V7O30. Adv Mat Lett 2012, 3: 305–308.

    Article  Google Scholar 

  5. [5]

    Chen XM, Sun YH, Zheng XH. High permittivity and low loss dielectric ceramics in the BaO-La2O3-TiO2-Ta2O5 system. J Eur Ceram Soc 2003, 23: 1571–1575.

    Article  Google Scholar 

  6. [6]

    Fang L, Chen L, Zheng H, et al. Structural and dielectric properties of Ba5LnSn3Nb7O30 (Ln = La, Nd) ceramics. Mater Lett 2004, 58: 2654–2657.

    Article  Google Scholar 

  7. [7]

    Behera B, Nayak P, Choudhary RNP. Study of complex impedance spectroscopic properties of LiBa2Nb5O15 ceramics. Mater Chem Phys 2007, 106: 193–197.

    Article  Google Scholar 

  8. [8]

    Macdonald JR. Impedance Spectroscopy. New York: Wiley, 1987.

    Google Scholar 

  9. [9]

    Almond DP, West AR. Impedance and modulus spectroscopy of “real” dispersive conductors. Solid State Ionics 1983, 11: 57–64.

    Article  Google Scholar 

  10. [10]

    Jonscher AK. The ‘universal’ dielectric response. Nature 1977, 267: 673–679.

    Article  Google Scholar 

  11. [11]

    Ngai KL, White CT. Frequency dependence of dielectric loss in condensed matter. Phys Rev B 1979, 20: 2475.

    Article  Google Scholar 

  12. [12]

    Dissado LA, Hill RM. Non-exponential decay in dielectrics and dynamics of correlated systems. Nature 1979, 279: 685–689.

    Article  Google Scholar 

  13. [13]

    West AR, Sinclair DC, Hirose N. Characterization of electrical materials, especially ferroelectrics, by impedance spectroscopy. J Electroceram 1997, 1: 65–71.

    Article  Google Scholar 

  14. [14]

    Abouzari MRS, Berkemeier F, Schmitz G, et al. On the physical interpretation of constant phase elements. Solid State Ionics 2009, 180: 922–927.

    Article  Google Scholar 

  15. [15]

    Kaplan T, Gray LJ, Liu SH. Self-affine fractal model for a metal-electrolyte interface. Phys Rev B 1987, 35: 5379.

    Article  Google Scholar 

  16. [16]

    Maitra MG, Sinha M, Mukhopadhyay AK, et al. Ion-conductivity and Young’s modulus of the polymer electrolyte PEO-ammonium perchlorate. Solid State Ionics 2007, 178: 167–171.

    Article  Google Scholar 

  17. [17]

    Zhang Y, Huang Y, Wang L. Study of EVOH based single ion polymer electrolyte: Composition and microstructure effects on the proton conductivity. Solid State Ionics 2006, 177: 65–71.

    Article  Google Scholar 

  18. [18]

    Das PR, Choudhary RNP, Samantray BK. Diffuse ferroelectric phase transition in Na2Pb2Sm2W2Ti4Nb4O30 ceramics. Mater Chem Phys 2007, 101: 228–233.

    Article  Google Scholar 

  19. [19]

    Das PR, Choudhary RNP, Samantray BK. Diffuse ferroelectric phase transition in Na2Pb2Nd2W2Ti4Nb4O30 ceramic. J Alloys Compd 2008, 448: 32–37.

    Article  Google Scholar 

  20. [20]

    Hodge IM, Ingram MD, West AR. Impedance and modulus spectroscopy of polycrystalline solid electrolytes. J Electroanal Chem Interfacial Electroch 1976, 74: 125–143.

    Article  Google Scholar 

  21. [21]

    Irvine JTS, Sinclair DC, West AR. Electroceramics: Characterization by impedance spectroscopy. Adv Mater 1990, 2: 132–138.

    Article  Google Scholar 

  22. [22]

    Das PS, Chakraborty PK, Behera B, et al. Electrical properties of Li2BiV5O15 ceramics. Physica B 2007, 395: 98–103.

    Article  Google Scholar 

  23. [23]

    Rao KS, Krishna PM, Prasad DM, et al. Modulus spectroscopy of lead potassium titanium niobate (Pb0.95K0.1Ti0.25Nb1.8O6) ceramics. J Mater Sci 2007, 42: 4801–4809.

    Article  Google Scholar 

  24. [24]

    Ngai RL, León C. Recent advances in relating macroscopic electrical relaxation data to microscopic movements of the ions in ionically conducting materials. Solid State Ionics 1999, 125: 81–90.

    Article  Google Scholar 

  25. [25]

    Barker AS, Ditzenberger JA, Remeika JP. Lattice vibrations and ion transport spectra in β-alumina. II. Microwave spectra. Phys Rev B 1976, 14: 4254.

    Article  Google Scholar 

  26. [26]

    Masó N, Yue XY, Goto T, et al. Frequency-dependent electrical properties of ferroelectric BaTi2O5 single crystal. J Appl Phys 2011, 109:024107.

    Article  Google Scholar 

  27. [27]

    Funke K. Jump relaxation in solid electrolytes. Prog Solid State Ch 1993, 22: 111–195.

    Article  Google Scholar 

  28. [28]

    Sen S, Choudhary RNP. Impedance studies of Sr modified BaZr0.05Ti0.95O3 ceramics. Mater Chem Phys 2004, 87: 256–263.

    Article  Google Scholar 

  29. [29]

    Zheludev IS. Physics of Crystalline Dielectrics. Vol. 2 Electrical Properties. New York-London: Plenum Press, 1971.

    Book  Google Scholar 

  30. [30]

    Varada Rajulu KC, Tilak B, Rao KS. Electricalconductivity and dielectric properties of Bi0.5(Na0.7K0.2Li0.1)0.5TiO3 ceramic material. American Journal of Materials Science 2012, 2: 15–21.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Piyush R. Das.

Additional information

This article is published with open access at

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Biswal, L., Das, P.R. & Behera, B. Frequency dependent electrical properties of Na2Pb2R2W2Ti4Nb4O30 (R = Nd, Sm) ceramics. J Adv Ceram 3, 215–223 (2014).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • ceramics
  • electrical properties
  • microstructure
  • electrical conductivity