Skip to main content

Effect of pH on rheology of aqueous Al2O3/SiC colloidal system

Abstract

The rheological behavior of aqueous Al2O3/SiC suspensions at different pH values was investigated by rheological measurement. Experimental results showed that at pH = 3–6, Al2O3 and SiC particles have opposite surface charges, and the binary suspensions have lower viscosity than the unary suspensions at shear rates of 0–300 s−1. Furthermore, at pH = 3–12, the stability of the Al2O3 component seemed to dominate the overall rheological behavior of the Al2O3/SiC binary suspensions. The tendency mentioned above showed little variations in various ionic strengths, particle diameters and component fractions.

References

  1. Israelachvili JN. Intermolecular and Surface Forces. London: Academic Press, 1992.

    Google Scholar 

  2. Lange FF. Powder processing science and technology for increased reliability. J Am Ceram Soc 1989, 72: 3–15.

    Article  Google Scholar 

  3. Kong D, Yang H, Yang Y, et al. Dispersion behavior and stabilization mechanism of alumina powders in silica sol. Mater Lett 2004, 58: 3503–3508.

    Article  Google Scholar 

  4. Cesarano J, Aksay IA. Processing of highly concentrated aqueous α-alumina suspensions stabilized with polyelectrolytes. J Am Ceram Soc 1988, 71: 1062–1067.

    Article  Google Scholar 

  5. Wnek WJ. An analysis of the dependence of the zeta potential and surface charge on surfactant concentration, ionic strength, and pH. J Colloid Interface Sci 1977, 60: 361–375.

    Article  Google Scholar 

  6. Lu K, Kessler C. Colloidal dispersion and rheology study of nanoparticles. J Mater Sci 2006, 41: 5613–5618.

    Article  Google Scholar 

  7. Wang J, Stevens R. Zirconia-toughened alumina (ZTA) ceramics. J Mater Sci 1989, 24: 3421–3440.

    Article  Google Scholar 

  8. Bijsterbosch HD, Cohen Stuart MA, Fleer GJ. Adsorption of graft copolymers onto silica and titania. Macromolecules 1998, 31: 8981–8987.

    Article  Google Scholar 

  9. Vamvakaki M, Billingham NC, Armes SP, et al. Controlled structure copolymers for the dispersion of high-performance ceramics in aqueous media. J Mater Chem 2001, 11: 2437–2444.

    Article  Google Scholar 

  10. Moreno R. The role of slip additives in tape-casting technology: Part I-solvents and dispersants. Am Ceram Soc Bull 1992, 71: 1521–1531.

    Google Scholar 

  11. Cerbelaud M, Videcoq A, Abélard P, et al. Self-assembly of oppositely charged particles in dilute ceramic suspensions: Predictive role of simulations. Soft Matter 2010, 6: 370–382.

    Article  Google Scholar 

  12. Xiao C, Chen H, Yu X, et al. Dispersion of aqueous alumina suspensions with biodegradable polymers. J Am Ceram Soc 2011, 94: 3276–3281.

    Article  Google Scholar 

  13. Cerbelaud M, Videcoq A, Abélard P, et al. Heteroaggregation between Al2O3 submicrometer particles and SiO2 nanoparticles: Experiment and simulation. Langmuir 2008, 24: 3001–3008.

    Article  Google Scholar 

  14. Raşa M, Philipse AP, Meeldijk JD. Heteroaggregation, repeptization and stability in mixtures of oppositely charged colloids. J Colloid Interface Sci 2004, 278: 115–125.

    Article  Google Scholar 

  15. Hütter M. Local structure evolution in particle network formation studied by Brownian dynamics simulation. J Colloid Interface Sci 2000, 231: 337–350.

    Article  Google Scholar 

  16. López-López JM, Schmitt A, Moncho-Jordá A, et al. Electrostatic heteroaggregation regimes in colloidal suspensions. Adv Colloid Interfac 2009, 147–148: 186–204.

    Article  Google Scholar 

  17. Hartley PA, Parfitt GD. Dispersion of powders in liquids. 1. The contribution of the van der Waals force to the cohesiveness of carbon black powders. Langmuir 1985, 1: 651–657.

    Article  Google Scholar 

  18. Bergström L. Hamaker constants of inorganic materials. Adv Colloid Interfac 1997, 70: 125–169.

    Article  Google Scholar 

  19. López-López JM, Schmitt A, Moncho-Jordá A, et al. Stability of binary colloids: Kinetic and structural aspects of heteroaggregation processes. Soft Matter 2006, 2: 1025–1042.

    Article  Google Scholar 

  20. Wang X, Zhang H, Guo L. Effect of ionic strength on the stability of binary ceramic suspensions. J Am Ceram Soc 2007, 90: 3435–3440.

    Article  Google Scholar 

  21. Wang X, Guo L. Effect of ionic strength on rheological properties of binary Al2O3/ZrO2 suspensions. Colloids Surf A 2007, 297: 7–13.

    Article  Google Scholar 

  22. Uricanu V, Eastman JR, Vincent B. Stability in colloidal mixtures containing particles with a large disparity in size. J Colloid Interface Sci 2001, 233: 1–11.

    Article  Google Scholar 

  23. Kordani N, Vanini AS, Asadi A, et al. Optimization of fracture behavior of alumina/silicon carbide nano ceramic. Neural Comput Appl 2013, 23: 2379–2385.

    Article  Google Scholar 

  24. Yang Q, Troczynski T. Dispersion of alumina and silicon carbide powders in alumina sol. J Am Ceram Soc 1999, 82: 1928–1930.

    Article  Google Scholar 

  25. Majidian H, Ebadzadeh T, Salahi E. Stability evaluation of aqueous alumina-zircon-silicon carbide suspensions by application of DLVO theory. Ceram Int 2011, 37: 2941–2945.

    Article  Google Scholar 

  26. Xiao C, Ni Q, Chen H, et al. Effect of polyvinylpyrrolidone on rheology of aqueous SiC suspensions dispersed with poly (aspartic acid). Colloids Surf A 2012, 399: 108–111.

    Article  Google Scholar 

  27. Matijević E, Kitazawa Y. Heterocoagulation. Colloid & Polymer Sci 1983, 261: 527–534.

    Article  Google Scholar 

  28. Matsumoto H, Nagao D, Konno M. Repetitive heterocoagulation of oppositely charged particles for enhancement of magnetic nanoparticle loading into monodisperse silica particles. Langmuir 2010, 26: 4207–4211.

    Article  Google Scholar 

  29. Li G, Yang X, Wang J. Raspberry-like polymer composite particles via electrostatic heterocoagulation. Colloids Surf A 2008, 322: 192–198.

    Article  Google Scholar 

  30. Minami H, Mizuta Y, Suzuki T. Preparation of raspberry-like polymer particles by a heterocoagulation technique utilizing hydrogen bonding interactions between steric stabilizers. Langmuir 2013, 29: 554–560.

    Article  Google Scholar 

  31. Das S, Murthy VSR, Murty GS. Particulate size effect on the rheology of SiC-glass composites. J Mater Sci 1999, 34: 1347–1352.

    Article  Google Scholar 

  32. Guo L-C, Zhang Y, Uchida N, et al. Adsorption effects on the rheological properties of aqueous alumina suspensions with polyelectrolyte. J Am Ceram Soc 1998, 81: 549–556.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lucun Guo.

Additional information

This article is published with open access at Springerlink.com

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhang, Y., Chen, H. et al. Effect of pH on rheology of aqueous Al2O3/SiC colloidal system. J Adv Ceram 3, 125–131 (2014). https://doi.org/10.1007/s40145-014-0102-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40145-014-0102-4

Keywords

  • alumina
  • silicon carbide
  • mixed colloidal dispersion
  • rheology