Skip to main content

Rapid synthesis of nanocrystalline SnO2 by a microwave-assisted combustion method


A facile and rapid microwave-assisted combustion method was used to synthesis nanocrystalline SnO2 powders, through dissolution of tin nitrate (as oxidant) and glycine (as fuel) as starting materials and water as solvent and then heating the resulting solution in a microwave oven. The study suggested that application of microwave heating to produce the nanosize SnO2 was achieved in a few minutes. The structure and morphology of the as-prepared combustion products were investigated by means of powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM). Fourier transform infrared spectroscopy (FTIR) and Raman spectra confirmed the formation of tetragonal rutile structure SnO2, and the SEM results indicated the surface characteristic of the products. The as-prepared powders have larger band gap energy as 3.67 eV.


  1. [1]

    Chen D, Gao L. Facile synthesis of single-crystal tin oxide nanorods with tunable dimensions via hydrothermal process. Chem Phys Lett 2004, 398: 201–206.

    Article  Google Scholar 

  2. [2]

    Michel E, Stuerga D, Chaumont D. Microwave flash synthesis of tin dioxide sols from tin chloride aqueous solutions. J Mater Sci Lett 2001, 20: 1593–1595.

    Article  Google Scholar 

  3. [3]

    Jiang L, Sun G, Zhou Z, et al. Size-controllable synthesis of monodispersed SnO2 nanoparticles and application in electrocatalysts. J Phys Chem B 2005, 109: 8774–8778.

    Article  Google Scholar 

  4. [4]

    Yang H, Hu Y, Tang A, et al. Synthesis of tin oxide nanoparticles by mechanochemical reaction. J Alloys Compd 2004, 363: 276–279.

    Article  Google Scholar 

  5. [5]

    Pan ZW, Dai ZR, Wang ZL. Nanobelts of semiconducting oxides. Science 2001, 291: 1947–1949.

    Article  Google Scholar 

  6. [6]

    Baik NS, Sakai G, Miura N, et al. Preparation of stabilized nanosized tin oxide particles by hydrothermal treatment. J Am Ceram Soc 2000, 83: 2983–2987.

    Article  Google Scholar 

  7. [7]

    Song KC, Kang Y. Preparation of high surface area tin oxide powders by a homogeneous precipitation method. Mater Lett 2000, 42: 283–289.

    Article  Google Scholar 

  8. [8]

    Zhu J-J, Zhu J-M, Liao X-H, et al. Rapid synthesis of nanocrystalline SnO2 powders by microwave heating method. Mater Lett 2002, 53: 12–19.

    Article  Google Scholar 

  9. [9]

    Wu D-S, Han C-Y, Wang S-Y, et al. Microwave-assisted solution synthesis of SnO nanocrystallites. Mater Lett 2002, 53: 155–159.

    Article  Google Scholar 

  10. [10]

    Pires FI, Joanni E, Savu R, et al. Microwave-assisted hydrothermal synthesis of nanocrystalline SnO powders. Mater Lett 2008, 62: 239–242.

    Article  Google Scholar 

  11. [11]

    Krishna M, Komarneni S. Conventional- vs microwave-hydrothermal synthesis of tin oxide, SnO2 nanoparticles. Ceram Int 2009, 35: 3375–3379.

    Article  Google Scholar 

  12. [12]

    Nehru LC, Swaminathan V, Sanjeeviraja C. Rapid synthesis of nanocrystalline ZnO by a microwave-assisted combustion method. Powder Technol 2012, 226: 29–33.

    Article  Google Scholar 

  13. [13]

    Ristić M, Ivanda M, Popović S, et al. Dependence of nanocrystalline SnO2 particle size on synthesis route. J Non-Cryst Solids 2002, 303: 270–280.

    Article  Google Scholar 

  14. [14]

    Wu J-J, Liu S-C. Catalyst-free growth and characterization of ZnO nanorods. J Phys Chem B 2002, 106: 9546–9551.

    Article  Google Scholar 

  15. [15]

    Tauc J. Amorphous and Liquid Semiconductor. New York: Plenum Press, 1974.

    Book  Google Scholar 

  16. [16]

    Brus LE. Structure and electronic states of quantum semiconductor crystallites. Nanostruct Mater 1992, 1: 71–75.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Chinnappanadar Sanjeeviraja.

Additional information

This article is published with open access at

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nehru, L.C., Sanjeeviraja, C. Rapid synthesis of nanocrystalline SnO2 by a microwave-assisted combustion method. J Adv Ceram 3, 171–176 (2014).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • nanoparticles
  • tin oxide
  • glycine
  • stoichiometric
  • combustion
  • optical