Alvani C, Casadio S, Contini V, et al. Li2TiO3 pebbles reprocessing, recovery of 6Li as Li2CO3. J Nucl Mater 2002, 307–311: 837–841.
Article
Google Scholar
Kopasz JP, Miller JM, Johnson CE. Tritium release from lithium titanate, a low-activation tritium breeding material. J Nucl Mater 1994, 212–215: 927–931.
Article
Google Scholar
Roux N, Avon J, Floreancing A, et al. Lowtemperature tritium releasing ceramics as potential materials for the ITER breeding blanket. J Nucl Mater 1996, 233–237:1431–1435.
Article
Google Scholar
Dienst W, Zimmermann H. Investigation of the mechanical properties of ceramic breeder materials. J Nucl Mater 1988, 155–157: 476–479.
Article
Google Scholar
Rasneur B, Charpin J. Chemical properties of lithium ceramics: Reactivity with water and water vapour. J Nucl Mater 1988, 155–157: 461–465.
Article
Google Scholar
Hofmann P, Dienst W. Compatibility studies of metallic materials with lithium-based oxides. J Nucl Mater 1988, 155–157: 485–490.
Article
Google Scholar
Noda K, Ishii Y, Matsui H, et al. A study of tritium behavior in lithium oxide by ion conductivity measurements. Fusion Eng Des 1989, 8: 329–333.
Article
Google Scholar
Roux N, Tanaka S, Johnson C, et al. Ceramic breeder material development. Fusion Eng Des 1998, 41: 31–38.
Article
Google Scholar
Gierszewski P. Review of properties of lithium metatitanate. Fusion Eng Des 1998, 39–40: 739–743.
Article
Google Scholar
Hegeman JBJ, van Essen EDL, Jong M, et al. Thermomechanical behaviour of ceramic breeder pebble stacks for HICU. Fusion Eng Des 2003, 69: 425–429.
Article
Google Scholar
Tsuchiya K, Kawamura H, Takayama T, et al. Control of particle size and density of Li2TiO3 pebbles fabricated by indirect wet processes. J Nucl Mater 2005, 345: 239–244.
Article
Google Scholar
Fehr Th, Schmidbauer E. Electrical conductivity of Li2TiO3 ceramics. Solid State Ionics 2007, 178: 35–41.
Article
Google Scholar
Kinjyo T, Nishikawa M, Enoeda M, et al. Tritium diffusivity in crystal grain of Li2TiO3 and tritium release behavior under several purge gas conditions. Fusion Eng Des 2008, 83: 580–587.
Article
Google Scholar
Wu X, Wen Z, Xu X, et al. Fabrication and improvement of the density of Li2TiO3 pebbles by the optimization of a sol-gel method. J Nucl Mater 2009, 393: 186–191.
Article
Google Scholar
Sinha A, Nair SR, Sinha PK. Single step synthesis of Li2TiO3 powder. J Nucl Mater 2010 399: 162–166.
Article
Google Scholar
Vittal Rao TV, Bamankar YR, Mukerjee SK, et al. Preparation and characterization of Li2TiO3 pebbles by internal gelation sol-gel process. J Nucl Mater 2012, 426: 102–108.
Article
Google Scholar
Ohno H, Konishi S, Nagasaki T, et al. Correlation behavior of lithium and tritium in some solid breeder materials. J Nucl Mater 1985, 133–134: 181–185.
Article
Google Scholar
Deptuła A, Łada W, Olczak T, et al. Preparation of lithium titanate by sol-gel method. Nukleonika 2001, 46: 95–100.
Google Scholar
Tsuchiya K, Kawamura H, Fuchinoue K, et al. Fabrication development and preliminary characterization of Li2TiO3 pebbles by wet process. J Nucl Mater 1998, 258–263: 1985–1990.
Article
Google Scholar
Jung C-H. Sintering characterization of Li2TiO3 ceramic breeder powders prepared by the solution combustion synthesis process. J Nucl Mater 2005, 341: 148–152.
Article
Google Scholar
Lulewicz JD, Roux N. Fabrication of Li2TiO3 pebbles by the extrusion-spheronisation-sintering process. J Nucl Mater 2002, 307–311: 803–806.
Article
Google Scholar
Mandal D, Sathiyamoorthy D, Vinjamur M. Experimental measurement of effective thermal conductivity of packed lithium-titanate pebble bed. Fusion Eng Des 2012, 87: 67–76.
Article
Google Scholar
Sinclair DC, West AR. Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J Appl Phys 1989, 66: 3850.
Article
Google Scholar
Lanfredi S, Rodrigues ACM. Impedance spectroscopy study of the electrical conductivity and dielectric constant of polycrystalline LiNbO3. J Appl Phys 1999, 86: 2215.
Article
Google Scholar
Barsoukov E, Macdonald JR. Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd, edn. New York: John Wiley & Sons, 2005.
Book
Google Scholar
Wang CC, Wang C, Zeng R, et al. Intergrain connectivity of MgB2 ceramics studied by impedance analysis. J Appl Phys 2010, 108: 023901.
Article
Google Scholar
Argall F, Jonscher AK. Dielectric properties of thin films of aluminium oxide and silicon oxide. Thin Solid Films 1968, 2: 185–210.
Article
Google Scholar
Vītiņš G, Ķizāne G, Lūsis A, et al. Electrical conductivity studies in the system Li2TiO3-Li1.33Ti1.67O4. J Solid State Electr 2002, 6: 311–319.
Article
Google Scholar