Toupin M, Brousse T, Bélanger D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem Mater 2004, 16: 3184–3190.
Article
Google Scholar
Bélanger D, Brousse T, Long JW. Manganese oxides: Battery materials make the leap to electrochemical capacitors. Electrochem Soc Interface 2008, Spring: 49–52.
Google Scholar
Ghurye G, Clifford D. Laboratory study on the oxidation of arsenic III to arsenic V. EPA/600/ R-01/021, March 2001
Google Scholar
Li D, McCann JT, Xia YN. Electrospinning: A simple and versatile technique for producing ceramic nanofibers and nanotubes. J Am Ceram Soc 2006, 89: 1861–1869.
Article
Google Scholar
Panda PK, Sahoo B. Synthesis and applications of electrospun nanofibers-A review. Nanotechnology 1990, 1: 399–416.
Google Scholar
Panda PK. Ceramic nanofibers by electrospinning technique—A review. Trans Indian Ceram S 2007, 66: 65–76.
Article
Google Scholar
Sundarrajan S, Chandrasekaran AR, Ramakrishna S. An update on nanomaterials-based textiles for protection and decontamination. J Am Ceram Soc 2010, 93: 3955–3975.
Article
Google Scholar
Huang ZM, Zhang YZ, Kotaki M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 2003, 63: 2223–2253.
Article
Google Scholar
Panda PK, Ramakrishna S. Electrospinning of alumina nanofibers using different precursors. J Mater Sci 2007, 42: 2189–2193.
Article
Google Scholar
Nguyen TA, Park S, Kim JB, et al. Polycrystalline tungsten oxide nanofibers for gas-sensing applications. Sens Actuators B 2011, 160: 549–554.
Article
Google Scholar
Meyer R, Shrout T, Yoshikawa S. Lead zirconate titanate fine fibers derived from alkoxide-based sol-gel technology. J Am Ceram Soc 1998, 81: 861–868.
Article
Google Scholar
Sahoo B, Panda PK. Preparation and characterization of barium titanate nanofibers by electrospinning technique. Ceram Int 2012, 38: 5189–5193.
Article
Google Scholar
Panda PK. Preparation and characterization of samaria nanofibers by electrospinning. Ceram Int 2012, DOI: 10.1016/j.ceramint.2012.11.048.
Google Scholar
Yang XH, Shao CL, Liu YC, et al. Nanofibers of CeO2 via an electrospinning technique. Thin Solid Films 2005, 478: 228–231.
Article
Google Scholar
Archana PS, Jose R, Jin TM, et al. Structural and electrical properties of Nb-doped anatase TiO2 nanowires by electrospinning. J Am Ceram Soc 2010, 93: 4096–4102.
Article
Google Scholar
Park JY, Kim SS. Growth of nanograins in electrospun ZnO nanofibers. J Am Ceram Soc 2009, 92: 1691–1694.
Article
Google Scholar
Dai YQ, Liu WY, Formo E, et al. Ceramic nanofibers fabricated by electrospinning and their applications in catalysis, environmental science, and energy technology. Polym Adv Technol 2011, 22: 326–338.
Article
Google Scholar
Yu PC, Yang RJ, Tsai YY, et al. Growth mechanism of single-crystal α-Al2O3 nanofibers fabricated by electrospinning techniques. J Eur Ceram Soc 2011, 31: 723–731.
Article
Google Scholar
Lei ZB, Zhang JT, Zhao XS. Ultrathin MnO2 nanofibers grown on graphitic carbon spheres as high-performance asymmetric supercapacitor electrodes. J Mater Chem 2012, 22: 153–160.
Article
Google Scholar
Razak SIA, Ahmad AL, Zein SHS, et al. MnO2-filled multiwalled carbon nanotube/polyaniline nanocomposites with enhanced interfacial interaction and electronic properties. Scripta Mater 2009, 61: 592–595.
Article
Google Scholar
Shao CL, Guan HY, Liu YC, et al. Preparation of Mn2O3 and Mn3O4 nanofibers via an electrospinning technique. J Solid Stat Chem 2004, 177: 2628–2631.
Article
Google Scholar
Agarwal S, Greiner A, Wendorff JH. Electrospinning of manmade and biopolymer nanofibers—Progress in techniques, materials and applications. Adv Funct Mater 2009, 19: 2863–2879.
Article
Google Scholar