Dielectric composites with a high and temperature-independent dielectric constant


Dielectric composites made using P(VDF-CTFE) 88/12 mol% as polymer matrix and both micro-sized and nano-sized CaCu3Ti4O12 (CCTO) particles as filler are developed. These composites exhibit high dielectric constant with a small dielectric loss. More importantly, it is found that the dielectric constant of these composites is almost independent of temperature from 25 °C to 125 °C. Comparing the composites made using micro-sized CCTO particles, the composites made using nano-sized CCTO particles exhibit a smaller dielectric loss. The dielectric properties of these composites indicate that the nano-sized CCTO particles have a smaller dielectric constant than the micro-sized CCTO particles.


  1. [1]

    Zhang L, Cheng ZY. Development of polymer-based 0-3 composites with high dielectric constant. J Adv Dielectrics 2011, 1: 389–406.

    Article  Google Scholar 

  2. [2]

    Dang ZM, Yuan JK, Zha JW, et al. Fundamentals, processes and applications of high-permittivity polymer-matrix composites. Pro Mater Sci 2012, 57: 660–723.

    Article  Google Scholar 

  3. [3]

    Sebastian MT, Jantunen H. Polymer-ceramic composites of 0–3 connectivity for circuits in electronics: A Review. Int J Appl Ceram Technol 2010, 7: 415–434.

    Google Scholar 

  4. [4]

    Dang ZM, Wang HY, Peng B, et al. Effect of BaTiO3 size on dielectric property of BaTiO3/PVDF composites. J Electroceram 2008, 21: 381–384.

    Article  Google Scholar 

  5. [5]

    Kuo DH, Chang CC, Su TY, et al. Dielectric properties of three ceramic/epoxy composites. Mater Chem Phys 2004, 85: 201–206.

    Article  Google Scholar 

  6. [6]

    Lam KH, Chan HLW, Luo HS, et al. Dielectric properties of 65PMN-35PT/P(VDF-TrFE) 0-3 composites. Microelectron Eng 2003, 66: 792–797.

    Article  Google Scholar 

  7. [7]

    Bai Y, Cheng ZY, Bharti V, et al. High dielectric constant ceramic powder polymer composites. Appl Phys Lett 2000, 76: 38043806.

    Google Scholar 

  8. [8]

    Dong LJ, Xiong CX, Quan HY, et al. Polyvinyl-butyral/lead zirconate titanates composites with high dielectric constant and low dielectric loss. Scr Mater 2006, 55: 835–837.

    Article  Google Scholar 

  9. [9]

    Adikary SU, Chan HLW, Choy CL, et al. Characterisation of proton irradiated Ba0.65Sr0.35TiO3/P(VDF-TrFE) ceramic-polymer composites. Compos Sci Technol 2002, 62: 2161–2167.

    Article  Google Scholar 

  10. [10]

    Cheng ZY, Katiyar RS, Yao X, et al. Temperature dependence of dielectric constant of relaxor ferroelectrics. Phys Rev B 1998, 57: 8166.

    Article  Google Scholar 

  11. [11]

    Cheng ZY, Zhang QM. Field actuated electroactive polymers. Mater Res Bull 2008, 33: 183–187.

    Article  Google Scholar 

  12. [12]

    Zhang QM, Bharti V, Zhao X. Giant electrostriction and relaxor ferroelectric behavior in electronirradiated poly (vinylidene fluoride-trifluoroethylene) copolymer. Science 1998, 280: 2101–2104.

    Article  Google Scholar 

  13. [13]

    Li ZM, Li SQ, Cheng ZY. Crystalline structure and transition behavior of recrystallized-irradiated P(VDF-TrFE) 65/35 copolymer. J Appl Phys 2005, 97: 014102.

    Article  Google Scholar 

  14. [14]

    Li ZM, Arbatti MD, Cheng ZY. Recrystallization study of high-energy-electron irradiated P(VDF-TrFE) 65/35 copolymer. Macromolecules 2004, 37: 79–85.

    Article  Google Scholar 

  15. [15]

    Cheng ZY, Zhang QM, Bateman FB. Dielectric relaxation behavior and its relation to microstructure in relaxor ferroelectric polymers — high-energy electron irradiated P(VDF-TrFE) copolymer. J Appl Phys 2002, 92: 6749–6755.

    Article  Google Scholar 

  16. [16]

    Cheng ZY, Bharti V, Xu TB, et al. Electrostrictive poly (vinylidene fluoride-trifluoroethylene) copolymers. Sens Actuators A: Phys 2001, 90: 138–147.

    Article  Google Scholar 

  17. [17]

    Subramanian MA, Li D, Duan N, et al. High dielectric constant in ACu(3)Ti(4)O(12) and ACu(3)Ti(3)FeO(12) phases. J Solid State Chem 2000, 151: 323–325.

    Article  Google Scholar 

  18. [18]

    Homes CC, Vogt T, Shapiro SM, et al. Optical response of high-dielectric-constant perovskite-related oxide. Science 2001, 293: 673–676.

    Article  Google Scholar 

  19. [19]

    Subramanian MA, Sleight AW. ACu(3)Ti(4)O(12) and ACu(3)Ru(4)O(12) perovskites: High dielectric constants and valence degeneracy. Solid State Sci 2002, 4: 347–351.

    Article  Google Scholar 

  20. [20]

    Arbatti MD, Shan XB, Cheng ZY. Ceramic-polymer composites with high dielectric Constant. Adv Mater 2007, 19: 1369.

    Article  Google Scholar 

  21. [21]

    Zhang L, Shan XB, Wu PX, et al. Dielectric characteristics of CaCu3Ti4O12/P(VDF-TrFE) nanocomposites. Appl Phys A 2012, 107: 597–602.

    Article  Google Scholar 

  22. [22]

    Thomas P, Varughese KT, Dwarakanath K, et al. Dielectric properties of poly (vinylidene fluoride)/CaCu3Ti4O12 composites. Compos Sci Technol 2010, 70: 539–545.

    Article  Google Scholar 

  23. [23]

    Amaral F, Rubinger CPL, Henry F, et al. Dielectric properties of polystyrene-CCTO composite. J Non-Cryst Sol 2008, 354: 5321–5322.

    Article  Google Scholar 

  24. [24]

    Dang ZM, Zhou T, Yao SH, et al. Advanced calcium copper titanate/polyimide functional hybrid films with high dielectric permittivity. Adv Mater 2009, 21: 2077–2082.

    Article  Google Scholar 

  25. [25]

    Li ZM. Novel electroactive poly (vinylidene fluoride)-based polymer systems and their applications. Ph.D. Dissertation. Auburn University, 2004.

  26. [26]

    Li ZM, Wang YH, Cheng ZY. Electromechanical properties of poly (vinylidene-fluoridechlorotrifluoroethylene) copolymer. Appl Phys Lett 2006, 88: 062904.

    Article  Google Scholar 

  27. [27]

    Chu BJ, Zhou X, Ren KL, et al. A dielectric polymer with high electric energy density and fast discharge speed. Science 2006, 313: 334–336.

    Article  Google Scholar 

  28. [28]

    Li JJ. Nanocomposites based on ferroelectric polymers for electrical energy storage Ph. D. Dissertation. Penn State University, 2009.

  29. [29]

    Wang Q, Zhu L. Polymer nanocomposites for electrical energy storage. J Polym Sci 2011, B49: 1421–1429.

    Article  Google Scholar 

  30. [30]

    Xia WM, Xu Z, Wen F, et al. Electrical energy density and dielectric properties of poly (vinylidene fluoride-chlorotrifluoroethylene)/BaSrTiO3 nanocomposites. Ceram Int 2012, 38: 1071–1075.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Z. -Y. Cheng.

Additional information

This article is published with open access at Springerlink.com

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Shan, X., Zhang, L., Yang, X. et al. Dielectric composites with a high and temperature-independent dielectric constant. J Adv Ceram 1, 310–316 (2012). https://doi.org/10.1007/s40145-012-0031-z

Download citation

Key words

  • dielectric constant
  • composite
  • CCTO
  • temperature dependence