Advertisement

Journal of Advanced Ceramics

, Volume 1, Issue 4, pp 310–316 | Cite as

Dielectric composites with a high and temperature-independent dielectric constant

  • Xiaobing Shan
  • Lin Zhang
  • Xiqiao Yang
  • Z. -Y. ChengEmail author
Open Access
Research Article

Abstract

Dielectric composites made using P(VDF-CTFE) 88/12 mol% as polymer matrix and both micro-sized and nano-sized CaCu3Ti4O12 (CCTO) particles as filler are developed. These composites exhibit high dielectric constant with a small dielectric loss. More importantly, it is found that the dielectric constant of these composites is almost independent of temperature from 25 °C to 125 °C. Comparing the composites made using micro-sized CCTO particles, the composites made using nano-sized CCTO particles exhibit a smaller dielectric loss. The dielectric properties of these composites indicate that the nano-sized CCTO particles have a smaller dielectric constant than the micro-sized CCTO particles.

Key words

dielectric constant composite CCTO P(VDF-CTFE) temperature dependence 

References

  1. [1]
    Zhang L, Cheng ZY. Development of polymer-based 0-3 composites with high dielectric constant. J Adv Dielectrics 2011, 1: 389–406.CrossRefGoogle Scholar
  2. [2]
    Dang ZM, Yuan JK, Zha JW, et al. Fundamentals, processes and applications of high-permittivity polymer-matrix composites. Pro Mater Sci 2012, 57: 660–723.CrossRefGoogle Scholar
  3. [3]
    Sebastian MT, Jantunen H. Polymer-ceramic composites of 0–3 connectivity for circuits in electronics: A Review. Int J Appl Ceram Technol 2010, 7: 415–434.Google Scholar
  4. [4]
    Dang ZM, Wang HY, Peng B, et al. Effect of BaTiO3 size on dielectric property of BaTiO3/PVDF composites. J Electroceram 2008, 21: 381–384.CrossRefGoogle Scholar
  5. [5]
    Kuo DH, Chang CC, Su TY, et al. Dielectric properties of three ceramic/epoxy composites. Mater Chem Phys 2004, 85: 201–206.CrossRefGoogle Scholar
  6. [6]
    Lam KH, Chan HLW, Luo HS, et al. Dielectric properties of 65PMN-35PT/P(VDF-TrFE) 0-3 composites. Microelectron Eng 2003, 66: 792–797.CrossRefGoogle Scholar
  7. [7]
    Bai Y, Cheng ZY, Bharti V, et al. High dielectric constant ceramic powder polymer composites. Appl Phys Lett 2000, 76: 38043806.Google Scholar
  8. [8]
    Dong LJ, Xiong CX, Quan HY, et al. Polyvinyl-butyral/lead zirconate titanates composites with high dielectric constant and low dielectric loss. Scr Mater 2006, 55: 835–837.CrossRefGoogle Scholar
  9. [9]
    Adikary SU, Chan HLW, Choy CL, et al. Characterisation of proton irradiated Ba0.65Sr0.35TiO3/P(VDF-TrFE) ceramic-polymer composites. Compos Sci Technol 2002, 62: 2161–2167.CrossRefGoogle Scholar
  10. [10]
    Cheng ZY, Katiyar RS, Yao X, et al. Temperature dependence of dielectric constant of relaxor ferroelectrics. Phys Rev B 1998, 57: 8166.CrossRefGoogle Scholar
  11. [11]
    Cheng ZY, Zhang QM. Field actuated electroactive polymers. Mater Res Bull 2008, 33: 183–187.CrossRefGoogle Scholar
  12. [12]
    Zhang QM, Bharti V, Zhao X. Giant electrostriction and relaxor ferroelectric behavior in electronirradiated poly (vinylidene fluoride-trifluoroethylene) copolymer. Science 1998, 280: 2101–2104.CrossRefGoogle Scholar
  13. [13]
    Li ZM, Li SQ, Cheng ZY. Crystalline structure and transition behavior of recrystallized-irradiated P(VDF-TrFE) 65/35 copolymer. J Appl Phys 2005, 97: 014102.CrossRefGoogle Scholar
  14. [14]
    Li ZM, Arbatti MD, Cheng ZY. Recrystallization study of high-energy-electron irradiated P(VDF-TrFE) 65/35 copolymer. Macromolecules 2004, 37: 79–85.CrossRefGoogle Scholar
  15. [15]
    Cheng ZY, Zhang QM, Bateman FB. Dielectric relaxation behavior and its relation to microstructure in relaxor ferroelectric polymers — high-energy electron irradiated P(VDF-TrFE) copolymer. J Appl Phys 2002, 92: 6749–6755.CrossRefGoogle Scholar
  16. [16]
    Cheng ZY, Bharti V, Xu TB, et al. Electrostrictive poly (vinylidene fluoride-trifluoroethylene) copolymers. Sens Actuators A: Phys 2001, 90: 138–147.CrossRefGoogle Scholar
  17. [17]
    Subramanian MA, Li D, Duan N, et al. High dielectric constant in ACu(3)Ti(4)O(12) and ACu(3)Ti(3)FeO(12) phases. J Solid State Chem 2000, 151: 323–325.CrossRefGoogle Scholar
  18. [18]
    Homes CC, Vogt T, Shapiro SM, et al. Optical response of high-dielectric-constant perovskite-related oxide. Science 2001, 293: 673–676.CrossRefGoogle Scholar
  19. [19]
    Subramanian MA, Sleight AW. ACu(3)Ti(4)O(12) and ACu(3)Ru(4)O(12) perovskites: High dielectric constants and valence degeneracy. Solid State Sci 2002, 4: 347–351.CrossRefGoogle Scholar
  20. [20]
    Arbatti MD, Shan XB, Cheng ZY. Ceramic-polymer composites with high dielectric Constant. Adv Mater 2007, 19: 1369.CrossRefGoogle Scholar
  21. [21]
    Zhang L, Shan XB, Wu PX, et al. Dielectric characteristics of CaCu3Ti4O12/P(VDF-TrFE) nanocomposites. Appl Phys A 2012, 107: 597–602.CrossRefGoogle Scholar
  22. [22]
    Thomas P, Varughese KT, Dwarakanath K, et al. Dielectric properties of poly (vinylidene fluoride)/CaCu3Ti4O12 composites. Compos Sci Technol 2010, 70: 539–545.CrossRefGoogle Scholar
  23. [23]
    Amaral F, Rubinger CPL, Henry F, et al. Dielectric properties of polystyrene-CCTO composite. J Non-Cryst Sol 2008, 354: 5321–5322.CrossRefGoogle Scholar
  24. [24]
    Dang ZM, Zhou T, Yao SH, et al. Advanced calcium copper titanate/polyimide functional hybrid films with high dielectric permittivity. Adv Mater 2009, 21: 2077–2082.CrossRefGoogle Scholar
  25. [25]
    Li ZM. Novel electroactive poly (vinylidene fluoride)-based polymer systems and their applications. Ph.D. Dissertation. Auburn University, 2004.Google Scholar
  26. [26]
    Li ZM, Wang YH, Cheng ZY. Electromechanical properties of poly (vinylidene-fluoridechlorotrifluoroethylene) copolymer. Appl Phys Lett 2006, 88: 062904.CrossRefGoogle Scholar
  27. [27]
    Chu BJ, Zhou X, Ren KL, et al. A dielectric polymer with high electric energy density and fast discharge speed. Science 2006, 313: 334–336.CrossRefGoogle Scholar
  28. [28]
    Li JJ. Nanocomposites based on ferroelectric polymers for electrical energy storage Ph. D. Dissertation. Penn State University, 2009.Google Scholar
  29. [29]
    Wang Q, Zhu L. Polymer nanocomposites for electrical energy storage. J Polym Sci 2011, B49: 1421–1429.CrossRefGoogle Scholar
  30. [30]
    Xia WM, Xu Z, Wen F, et al. Electrical energy density and dielectric properties of poly (vinylidene fluoride-chlorotrifluoroethylene)/BaSrTiO3 nanocomposites. Ceram Int 2012, 38: 1071–1075.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Xiaobing Shan
    • 1
  • Lin Zhang
    • 1
  • Xiqiao Yang
    • 1
  • Z. -Y. Cheng
    • 1
    Email author
  1. 1.Materials Research and Education CenterAuburn UniversityAuburnUSA

Personalised recommendations