Generic principles of crack-healing ceramics

Abstract

Ceramic materials able to heal manufacture or damage induced microstructure defects might trigger a change in paradigm for design and application of load bearing ceramics. This work reviews thermodynamic and kinetic aspects governing the regeneration of solid contact able to transfer stress between disrupted crack surfaces in ceramics. Major crack healing processes include perturbation of crack-like pores followed by sintering of isolated pores, as well as reaction with an environmental atmosphere and filling of the crack space with an oxidation product. Since thermally activated solid state reactions require elevated temperatures which may exceed 1000 °C, processes able to trigger crack healing at lower temperatures are of particular interest for transferring into engineering applications. Generic principles of microstructure modifications able to facilitate crack repair at lower temperatures will be considered: (i) acceleration of material transport by grain boundary decoration and grain size reduction, and (ii) reduction of thermal activation barrier by repair filler activation. Examples demonstrating crack healing capability include oxidation reaction of low energy bonded intercalation metal from nano-laminate MAX phases and catalyzed surface nitridation of polymer derived ceramics containing repair fillers.

References

  1. [1]

    Feng QL, Cui FZ, Pu G, et al. Crystal orientation, toughening mechanisms and a mimic of nacre. Mat Sci Eng C 2000, 11: 19–25.

    Google Scholar 

  2. [2]

    Vander Zwaag S. Self Healing Materials. Dordrecht: Springer, 2007.

    Google Scholar 

  3. [3]

    Ghosh SK. Self-Healing Materials: Fundamentals, Design Strategies, and Applications. Weinheim: Wiley-VCH, 2009.

    Google Scholar 

  4. [4]

    Hager MD, Greil P, Leyens C, et al. Self healing materials. Adv Mat 2010, 22: 30–36.

    Google Scholar 

  5. [5]

    Nosonovsky M, Rohatgi PK. Biomimetics in Materials Science, Self-Healing, Self-Lubricating, and Self Cleaning Materials. Berlin: Springer, 2012.

    Google Scholar 

  6. [6]

    Yasuhara H, Marone C, Elshworth D. Fault zone restrengthening and frictional healing: The role of pressure solution. J Geophy Res 2005, 110: 06310.

    Google Scholar 

  7. [7]

    White SR, Sottos NR, Geubelle PH, et al. Autonomic healing of polymer composites. Nature 2001, 409: 794–797.

    Google Scholar 

  8. [8]

    Sigumonrong PD, Zhang J, Zhou Y, et al. Interfacial structure of V2AlC thin films deposited on (1120)-sapphire. Scr Mater 2011, 84: 347–350.

    Google Scholar 

  9. [9]

    Dementsov A, Privman V. Three-dimensional percolation modelling of self-healing composites. Phys Rev E 2011, 78: 021106.

    Google Scholar 

  10. [10]

    Evans AG, Charles EA. Strength recovery by diffusive crack healing. Acta Metall 1977, 25: 918–927.

    Google Scholar 

  11. [11]

    Wool RP. Self-healing materials: A review. Soft Matter 2008, 4: 400–418.

    Google Scholar 

  12. [12]

    Sottos N, White S, Bond I. Introduction: Self-healing polymers and composites. J Roy Soc 2007, 4: 347–348.

    Google Scholar 

  13. [13]

    Jarvis EA, Carter EA. A nanoscale mechanism of fatigue in ionic solids. Nano Lett 2006, 6: 505–509.

    Google Scholar 

  14. [14]

    Hager HD, Greil P, Leyens C, et al. Self healing materials. Adv Mat 2010, 22: 5424–5430.

    Google Scholar 

  15. [15]

    Jun L, Zheng ZX, Ding HF, et al. Preliminary study of the crack healing and strength recovery of Al2O3-matrix composites. Fatigue & Fract Eng Mat 2004, 27: 89–97.

    Google Scholar 

  16. [16]

    Nichols FA, Mullins WW. Surface-(interface) and volume-diffusion contributions to morphological changes driven by capillarity. Trans AIME 1965, 233: 1840–1848.

    Google Scholar 

  17. [17]

    Yen CF, Coble RL. Spheroidization of tubular voids in Al2O3 crystals at high temperatures. J Am Ceram Soc 1972, 55: 507–509.

    Google Scholar 

  18. [18]

    Wiederhorn SM, Townsend PR. Crack healing in glass. J Am Ceram Soc 1970, 53: 486–489.

    Google Scholar 

  19. [19]

    Ackler HD. Healing of lithographically introduced cracks in glass and glass-containing Ceramics. J Am Ceram Soc 1998, 81: 3093–3103.

    Google Scholar 

  20. [20]

    Wang Z, Li YZ, Harmer MP, et al. Thermal healing of laser-induced internal cracks in lithium fluoride crystals. J Am Ceram Soc 1992, 75: 1596–1602.

    Google Scholar 

  21. [21]

    Roberts JT, Wronda BJ. Crack healing in UO2. J Am Ceram Soc 1973, 56: 297–299.

    Google Scholar 

  22. [22]

    Bandyopadhyay G, Roberts JT. Crack healing and strength recovery in UO2. J Am Ceram Soc 1976, 59: 415–419.

    Google Scholar 

  23. [23]

    Lange FF, Radford KC. Healing of surface cracks in polycrystalline Al2O3. J Am Ceram Soc 1970, 53: 420–421.

    Google Scholar 

  24. [24]

    Gupta TK. Crack healing in thermally shocked MgO. J Am Ceram Soc 1975, 58: 143–150.

    Google Scholar 

  25. [25]

    Kim YW, Ando K, Chu CM. Crack-healing behavior of liquid-phase-sintered silicon carbide ceramics. J Am Ceram Soc 2003, 86: 465–470.

    Google Scholar 

  26. [26]

    Lee SK, Ishida W, Lee SY, et al. Crack-healing behavior and resultant strength properties of silicon carbide ceramic. J Europ Ceram Soc 2005, 25: 569–576.

    Google Scholar 

  27. [27]

    Mitomo M, Nishimura T, Tsutsumi M. Crack healing in silicon nitride and alumina ceramics. J Mat Sci Lett 1996, 15: I9–26.

    Google Scholar 

  28. [28]

    Yao F, Ando K, Chu MC, et al. Static and cyclic fatigue behaviour of crack healed Si3N4/SiC composite ceramics. J Europ Ceram Soc 2001, 21: 991–997.

    Google Scholar 

  29. [29]

    Rödel J, Glaeser AM. High-temperature healing of lithographically introduced cracks in Sapphire. J Am Ceram Soc 1990, 73: 592–601.

    Google Scholar 

  30. [30]

    Takahashi K, Yokouchi M, Lee SK, et al. Crack-healing behavior of Al2O3 toughened by SiC whiskers. J Am Ceram Soc 2003, 86: 2143–2147.

    Google Scholar 

  31. [31]

    Nakao W, Ono M, Lee SK, et al. Critical crack-healing condition for SiC whisker reinforced alumina under stress. J Europ Ceram Soc 2005, 25: 3649–3655.

    Google Scholar 

  32. [32]

    Chu MC, Sato S, Kobayashi Y, et al. Damage healing and strengthening behavior in intelligent mullite/SiC ceramics. Fatigue & Fract Eng Mat 1995, 18: 1019–1029.

    Google Scholar 

  33. [33]

    Nakao W, Mori S, Nakamura J, et al. Selfcrack-healing behavior of mullite/SiC particle/SiC whisker multi-composites and potential use for ceramic springs. J Am Ceram Soc 2006, 89: 1352–1357.

    Google Scholar 

  34. [34]

    Houjou K, Ando K, Takahashi K. Crack-healing behaviour of ZrO2/SiC composite ceramics. Int J Struct Integrity 2010, 1: 73–84.

    Google Scholar 

  35. [35]

    Chan KS, Page RA. Origin of the creep-crack growth threshold in a glass-ceramic. J Am Ceram Soc 1992, 75: 603–612.

    Google Scholar 

  36. [36]

    Clarke DR, Lange FF. Strengthening of silicon nitride by a post-fabrication annealing. J Am Ceram Soc 1982, 65: 51–52.

    Google Scholar 

  37. [37]

    Nakatani M, Ando K, Houjou K. Oxidation behaviour of Si3N4/Y2O3 system ceramics and effect on crack-healing treatment on oxidation. J Europ Ceram Soc 2008, 28: 1251–1257.

    Google Scholar 

  38. [38]

    Lange FF. Healing of surface cracks in SiC by oxidation. J Am Ceram Soc 1970, 53: 290–293.

    Google Scholar 

  39. [39]

    Osada T, Nakao W, Takahashi K, et al. Kinetics of self-crack-healing of alumina/silicon carbide composite including oxygen partial pressure effect. J Am Ceram Soc 2009, 92: 864–870.

    Google Scholar 

  40. [40]

    Jung YS, Nakao W, Takahashi K, et al. Crack healing of machining cracks induced by wheel grinding and resultant high-temperature mechanical properties in a Si3N4/SiC composite. J Am Ceram Soc 2009, 92: 167–173.

    Google Scholar 

  41. [41]

    Harrer W, Danzer R, Morrell R. Influence of surface defects on the biaxial strength of a silicon nitride ceramic-Increase of strength by crack healing. J Europ Ceram Soc 2012, 32: 27–35.

    Google Scholar 

  42. [42]

    Quemard L, Rebillat F, Guette A, et al. Self-healing mechanisms of a SiC fiber reinforced multi-layered ceramic matrix composite in high pressure steam environments. J Europ Ceram Soc 2007, 27: 2085–2094.

    Google Scholar 

  43. [43]

    Boccaccini AR, Ponton CB, Chawla KK. Development and healing of matrix microcracks in fibre reinforced glass matrix composites: Assessment by internal friction. Mat Sci Eng 1998, 241: 141–150.

    Google Scholar 

  44. [44]

    Chu MC, Cho SJ, Yoon KJ, et al. Crack repairing in alumina by penetrating glass. J Am Ceram Soc 2005, 88: 491–493.

    Google Scholar 

  45. [45]

    Takahashi K, Ando K, Murase H, et al. Threshold stress for crack-healing of Si3N4/SiC and resultant cyclic fatigue strength at the healing temperature. J Am Ceram Soc 2005, 88: 648–651.

    Google Scholar 

  46. [46]

    Chan KS, Page RA. Creep development in structural ceramics. J Am Ceram Soc 1993, 76: 803–826.

    Google Scholar 

  47. [47]

    Rice JR. Thermodynamics of quasi-static growth of Griffith cracks. J Mech Phys Solids 1978, 26: 61–78.

    Google Scholar 

  48. [48]

    Lawn B. Fracture of Brittle Solids, 2nd ed. Cambridge: Cambridge University Press 1993.

    Google Scholar 

  49. [49]

    Lawn BR. An atomistic model of kinetic crack growth in brittle solids. J Mat Sci 1975, 10: 469–480.

    Google Scholar 

  50. [50]

    Brantley SL, Evans B, Hickman SH, et al. Healing of microcracks in quartz: Implica-tions for fluid flow. Geology 1990, 18: 136–139.

    Google Scholar 

  51. [51]

    Nakao W, Abe S. Enhancement of the self-healing ability in oxidation induced self-healing ceramic by modifying the healing agent. Smart Mat Struct 2012, 21: 25–32.

    Google Scholar 

  52. [52]

    Gupta TK. Instability of cylindrical voids in alumina. J Am Ceram Soc 1978, 61: 191–195.

    Google Scholar 

  53. [53]

    Amamato Y, Kamada J, Otsuka H, et al. Repeatable photoinduced self-healing of covalently cross-linked polymers through reshuff-ling of trithiocarbonate units. Angew Chemie 2011, 50: 1660–1663.

    Google Scholar 

  54. [54]

    Gupta TK. Kinetics of strengthening of thermally shocked MgO and Al2O3. J Am Ceram Soc 1976, 59: 448–449.

    Google Scholar 

  55. [55]

    Wilson BA, Lee KY, Case ED. Diffusive crack-healing behavior in polycrystalline alumina: A comparison between microwave annealing and conventional annealing. Mat Res Bull 1997, 32: 1607–1616.

    Google Scholar 

  56. [56]

    Stevens RN, Dutton R. The propagation of Griffith cracks at high temperatures by mass trans-port process. Mat Sci Eng 1971, 8: 220–234.

    Google Scholar 

  57. [57]

    Gupta TK. Crack healing in Al2O3, MgO and related materials. J Am Ceram Soc 1984: 750–766.

  58. [58]

    Hickman SH, Evans B. Diffusional crack healing in calcite: The influence of crack geometry on healing rate. Phys Chem Min 1987, 15: 91–102.

    Google Scholar 

  59. [59]

    Huang P, Sun J. A numerical analysis of intergranular penny-shaped microcrack shrinkage controlled by coupled surface and interface diffusion. Met and Mat Trans 2004, 35: 1294–1301.

    Google Scholar 

  60. [60]

    Dutton R. Comments on “Crack healing in UO2”. J Am Ceram Soc 1973, 56: 660–661.

    Google Scholar 

  61. [61]

    Dutton R. The propagation of cracks by diffusion. In Fracture Mechanics of Ceramics. New York: Plenum Press, 1974: 649–657.

    Google Scholar 

  62. [62]

    Dutton R. Correction-comments on “Crack healing in UO2”. J Am Ceram Soc 1976, 59: 880–881.

    Google Scholar 

  63. [63]

    Bandyopadhay G, Kennedy CR. Thermal crack healing and strength recovery in UO2 subjected to varying degrees of thermal shock. J Am Ceram Soc 1977, 60: 48–50.

    Google Scholar 

  64. [64]

    Dryden JR, Kucerovsky D, Wilkinson DS, et al. Creep deformation due to a viscous grain boundary phase. Acta Metall 1989, 37: 2007–2015.

    Google Scholar 

  65. [65]

    Ferreira Nascimento ML, Zanotto ED. Diffusion processes in vitreous silica revisited. Phys Chem Glasses: Eur J Glass Sci Technol 2007, 48: 201–217.

    Google Scholar 

  66. [66]

    Avramov I, Vassilev TS, Penkov I. The glass transition temperature of silicate and borate glasses. J Non-Crystalline Sol 2005, 351: 472–476.

    Google Scholar 

  67. [67]

    Becher PF, Hampshire S, Pomeroy MJ, et al. An overview of the structure and properties of silicon-based oxynitride glasses. J Appl Glass Sci 2011, 2: 63–83.

    Google Scholar 

  68. [68]

    Song GM, Pei YT, Sloof WG, et al. Oxidation induced crack healing of Ti3AlC2 ceramics. Scr Mater 2008, 58: 13–16.

    Google Scholar 

  69. [69]

    Chou IA, Chan HM, Harmer MP. Effect of annealing environment on the crack healing and mechanical behavior of silicon carbide-reinforced alumina nanocomposites. J Am Ceram Soc 1998, 81: 1203–1208.

    Google Scholar 

  70. [70]

    Korous J, Chu MC, Nakatani M, et al. Crack healing behaviour of silicon carbide Ceramics. J Am Ceram Soc 2000, 83: 2788–2792.

    Google Scholar 

  71. [71]

    Ando K, Furusawa K, Chu MC, et al. Crack-healing behaviour under stress of mullite/silicon carbide ceramics and the resultant fatigue strength. J Am Ceram Soc 2001, 84: 2073–2078.

    Google Scholar 

  72. [72]

    Ando K, Chua MC, Tuji K, et al. Crack healing behaviour and high-temperature strength of mullite/SiC composite ceramics. J Europ Ceram Soc 2002, 22: 1313–1319.

    Google Scholar 

  73. [73]

    Kim YW, Ando K, Chu MC. Crack-healing behaviour of liquid-phase sintered silicon carbide ceramics. J Am Ceram Soc 2002, 86: 465–470.

    Google Scholar 

  74. [74]

    Liu SP, Ando K. Fatigue strength characteristics of crack-healing materials — Al2O3/SiC composite ceramics and monolithic Al2O3. J Chin Inst Eng 2004, 27: 395–404.

    Google Scholar 

  75. [75]

    Zhang YH, Edwards L, Plumbridge WJ. Crack healing in silicon nitride ceramics. J Am Ceram Soc 1998, 81: 1861–1868.

    Google Scholar 

  76. [76]

    Dey N, Socie DF, Hsia KJ. Modelling static and cyclic fatigue in ceramics containing a viscous grain goundary phase. Acta Metall Mater 1995, 43: 2163–2175.

    Google Scholar 

  77. [77]

    Barsoum MW. The MN+1AXN phases: A new class of solids thermodynamically stable nanolaminates. Progr Solid State Chem 2000, 28: 201–281.

    Google Scholar 

  78. [78]

    Eklund P, Beckers M, Jansson U, et al. The Mn + 1AXn phases: Materials science and thin-film processing. Thin Solid Films 2010, 518: 1851–1878.

    Google Scholar 

  79. [79]

    Sun ZM. Progress in research and development on MAX phases: A family of layered ternary compounds. Int Mat Rev 2011, 56: 143–166.

    Google Scholar 

  80. [80]

    Yang HY, Pei YT, Rao JC, et al. Self-healing performance of Ti2AlC ceramic. J Mat Chem 2012, 22: 8304–8313.

    Google Scholar 

  81. [81]

    Huang XX, Wen GW. Mechanical properties of Al4SiC4 bulk ceramics produced by solid state reaction. Ceram Int 2007, 33: 453–458.

    Google Scholar 

  82. [82]

    van der Zwaag S, van Dijk NH, Jonkers HN, et al. Self-healing behaviour in man-made engineering materials: Bioinspired but taking into account their intrinsic character. Phil Trans Roy Soc 2009, 367: 1689–1704.

    Google Scholar 

  83. [83]

    Li G, Uppu N. Shape memory polymer based self-healing syntactic foam: 3D confined thermomechanical characterization. Compos Sci Technol 2010, 70: 1419–1427.

    Google Scholar 

  84. [84]

    Kirkby EL, Michaud VJ, Mason JA, et al. Performance of self-healing epoxy with microencapsulated healing agent and shape memory alloy wires. Polymer 2009, 50: 5533–5538.

    Google Scholar 

  85. [85]

    Sestak J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta 1971, 3: 1–12.

    Google Scholar 

  86. [86]

    Wakai F, Brakke KA. Mechanics of sintering of coupled grain boundary and surface diffusion. Acta Mat 2011, 59: 5379–5387.

    Google Scholar 

  87. [87]

    Subramaniam A, Koch CT, Cannon RM, et al. Intergranular glassy films: An overview. Mat Sci Eng 2006, 422: 3–8.

    Google Scholar 

  88. [88]

    Clarke DR. On the equilibrium thickness of intergranular glass phases in ceramic materials. J Am Ceram Soc 1987, 70: 15–22.

    Google Scholar 

  89. [89]

    Galmarini S, Aschauer U, Bowen P, et al. Atomistic simulation of Y-doped apha-alumina interfaces. J Am Ceram Soc 2008, 91: 3643–3651.

    Google Scholar 

  90. [90]

    Chen IW, Xue LA. Development of superplastic ceramics. J Am Ceram Soc 1990, 73: 2585–2609.

    Google Scholar 

  91. [91]

    Smedskjaer MM, Mauro JC, Yue Y. Ionic diffusion and the topological origin of fragility in silicate glasses. J Chem Phys 2009, 131: 1–9.

    Google Scholar 

  92. [92]

    Yue YZ. The iso-structural viscosity, configu-rational entropy and fragility of oxide liquids. J Non-Cryst Solids 2009, 355: 737–744.

    Google Scholar 

  93. [93]

    Wu WH, Zhang JL, Zhou HW, et al. A method to study the crack healing process of glassformers. Appl Phys Lett 2008, 92: 1918–1921.

    Google Scholar 

  94. [94]

    Peterson IM, Tien TY. Thermal expansion and glass transition temperatures of Y-Mg-Si-Al-O-N glasses. J Am Ceram Soc 1995, 78: 1977–1979.

    Google Scholar 

  95. [95]

    Hampshire S, Pomeroy MJ. SiAlON bulk glasses and their role in silicon nitride grain boundaries: Composition-structure-property relationships. J Korean Ceram Soc 2012, 49: 301–307.

    Google Scholar 

  96. [96]

    Tredway WK, Risbud SH. Melt processing and properties of Barium-Sialon glasses. J Am Ceram Soc 1983, 66: 324–327.

    Google Scholar 

  97. [97]

    Rocherulle J, Guyader J, Verdier P, et al. Li-Si-AI-O-N and Li-Si-O-N oxynitride glasses study and characterization. J Mat Sci 1989, 24: 4525–4530.

    Google Scholar 

  98. [98]

    Lofaj F. Localized viscous flow in the oxide and oxinitride glasses by indentation creep. Chem Listy 2011, 105: 198–201.

    Google Scholar 

  99. [99]

    Becher PF, Lance MJ, Ferber MK. The influence of Mg substitution for Al on the properties of SiMeRE oxynitride glasses. J Non-Cryst Solids 2004, 333: 124–128.

    Google Scholar 

  100. [100]

    Hampshire S. Oxynitride glasses. J Europ Ceram Soc 2008, 28: 1475–1483.

    Google Scholar 

  101. [101]

    Clarke DR. Grain boundaries in polycrystalline ceramics. Ann Rev Mat Sci 1987, 17: 57–74.

    Google Scholar 

  102. [102]

    Hampshire S. Oxynitride glasses, their properties and crystallisation — A review. J Non-Cryst Solids 2003, 316: 64–73.

    Google Scholar 

  103. [103]

    Nichols FA, Mullins WW. Morphological changes of a surface of revolution due to capillarity-induced surface diffusion. J Appl Phys 1965, 36: 1826–1836.

    Google Scholar 

  104. [104]

    Stüwe HP, Kolednik O. Shape instability of thin cylinders. Acta Metall 1988, 36: 1705–1708.

    Google Scholar 

  105. [105]

    Kanters J, Eisele U, Rödel J. Cosintering simulation and experimentation: Case study of nano-crystalline zirconia. J Am Ceram Soc 2001, 84: 2757–2763.

    Google Scholar 

  106. [106]

    Zhang D, Weng G, Gong S, et al. The kinetics of initial stage in sintering process of BaTiO3-based PTCR ceramics and its computer simulation. Mat Sci Eng B 2003, 99: 88–92.

    Google Scholar 

  107. [107]

    Ferreira Nasciemento ML, Zanotto ED. Diffusion processes in vitreous silica revisited. Phys Chem Glasses: Eur J Glass Sci Techn B 2007, 48: 201–217.

    Google Scholar 

  108. [108]

    Roberston WM. Thermal etching and grain boundary grooving silicon ceramics. J Am Ceram Soc 1981, 64: 9–13.

    Google Scholar 

  109. [109]

    Kraft Riedel T. Numerical simulation of solid state sintering: Model and application. J Europ Ceram Soc 2004, 24: 345–361.

    Google Scholar 

  110. [110]

    Demirskyi D, Ragulya A, Agrawal D. Initial stage sintering of binderless tungsten carbide powder under microwave radiation. Ceram Int 2011, 37: 505–512.

    Google Scholar 

  111. [111]

    Orlando R, Pisani C, Ruiz E, et al. Ab-initio study of the bare and hydrated (001) surface of tetragonal zirconia. Surf Sci 1992, 275: 482–492.

    Google Scholar 

  112. [112]

    Parikh NM. Effect of atmosphere on surface tension of glass. J Am Ceram Soc 1958, 41: 18–22.

    Google Scholar 

  113. [113]

    Hara S, Izumi S, Kumagai T, et al. Surface energy, stress and structure of well-relaxed amorphous silicon: A combination approach of ab initio and classical molecular dynamics. Surf Sci 2005, 585: 17–24.

    Google Scholar 

  114. [114]

    Idrobo JC, Iddir H, Ögüt S, et al. Ab initio structural energetics of β-Si3N4 surfaces. Phys Rev B 2005, 72: 241301.

    Google Scholar 

  115. [115]

    Tsuruta K, Totsuji H, Totsuji C. Neck formation processes of nanocrystalline silicon carbide: A tight-binding molecular dynamics study. Phil Mag Lett 2001, 81: 357–366.

    Google Scholar 

  116. [116]

    Tseng TY, Nalwa HS. Handbook of Nanoceramics and Their Based Nanodevices. Valencia: Amercian Scientific Publishers, 2006.

    Google Scholar 

  117. [117]

    Harmer MP, Chan HM, Miller GA. Unique opportunities for microstructural engineering with duplex and laminar ceramic composites. J Am Ceram Soc 1992, 75: 1715–1728.

    Google Scholar 

  118. [118]

    Sun J, Simon SL. The melting behavior of aluminum nanoparticles. Thermochim Acta 2007, 463: 32–40.

    Google Scholar 

  119. [119]

    Nanda KK, Maisels A, Kruis FE, et al. Higher surface energy of free nanoparticles. Phys Rev Lett 2003, 91: 102–106.

    Google Scholar 

  120. [120]

    Tsantilis S, Briesen H, Pratsinis SE. Sintering time for silica particle growth. Aerosol Sci Techn 2001, 34: 237–246.

    Google Scholar 

  121. [121]

    Butyagin PY. Mechanical disordering and reactivity of solids. In Advances in Mechanoche Mistry, Physical and Chemical Processes under Deformation. Harvard Acad Publ, 1998: 91–165.

  122. [122]

    Tromanns D, Meech JA. Enhanced dissolution of minerals: Stored energy, amorphism and mechanical activation. Min Eng 2001, 14: 1359–1377.

    Google Scholar 

  123. [123]

    Song CM, Xu ZM, Wang YJ, et al. Synthesis and electrochemical characterization of LiMn2−xAlxO4 powders prepared by mechanical alloying and rotary heating. Electrochemis Try Commu 2003, 5: 907–912.

    Google Scholar 

  124. [124]

    Couchman PR, Jesser WA. Thermodynamic theory of size dependence of melting temperature in metals. Nature 1977, 269: 481–483.

    Google Scholar 

  125. [125]

    Lam NQ, Okamoto PR, Li M. Disorder-induced amorphization. J Nucl Mat 1997, 251: 89–97.

    Google Scholar 

  126. [126]

    Fecht HJ. Defect-induced melting and solid-state amorphization. Nature 1992, 356: 133–135.

    Google Scholar 

  127. [127]

    Nanko M, Maruoka D, Nguyen TD. Crack-healing function of metal/Al2O3 hybrid materials. IOP Conf Ser: Mater Sci Eng 2011, 18: 082–105.

    Google Scholar 

  128. [128]

    Song GM, Sloof WG, Li SB, et al. Crack healing of advanced machinable high temperature Ti3AlC2 ceramics. In Proc.1st Intern Conf on Self Healing Materials 2007: 1–9.

  129. [129]

    Yang HJ, Pei YT, Rao JC, et al. High temperature healing of Ti2AlC: On the origin of inhomogeneous oxide scale. Scr Mat 2011, 65: 135–138.

    Google Scholar 

  130. [130]

    Li SB, Song GM, Kwakernaak K, et al. Multiple crack healing of a Ti2AlC ceramic. J Europ Ceram Soc 2012, 32: 1813–1820.

    Google Scholar 

  131. [131]

    Barsoum MW, Farber L. Room-temperature deintercalation and self-extrusion of Ga from Cr2GaN. Science 2011, 284: 937–939.

    Google Scholar 

  132. [132]

    Liu B, Wang JY, Zhang J, et al. Theoretical investigation of A-element atom diffusion in Ti2AlC (A = Sn, Ga, Cd, In, and Pb). Appl Phys Lett 2009, 94: 1819–1825.

    Google Scholar 

  133. [133]

    Greil P. Advancements in polymer-filler derived ceramics. J Korean Ceram Soc 2012, 49: 279–286.

    Google Scholar 

  134. [134]

    Schlier L, Travitzky N, Gegner J, et al. Surface strengthening of extrusion formed polymer/filler derived ceramic composites. J Ceram Sci Techn 2012, 3: 12–18.

    Google Scholar 

  135. [135]

    Erny T. Formation and properties of polymer derived composite ceramics of the system MeSi2/polysiloxane. Ph.D. Thesis. Erlangen, Germany: Univ Erlangen-Nuernberg, 1996.

    Google Scholar 

  136. [136]

    Colombo P, Mera G, Riedel R, et al. Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J Am Ceram Soc 2010, 93: 1805–1837.

    Google Scholar 

  137. [137]

    Larker R. Reaction sintering and properties of silicon oxynitride densified by hot isostatic pressing. J Am Ceram Soc 1992, 75: 62–55.

    Google Scholar 

  138. [138]

    Riley FL. Silicon nitride and related materials. J Am Ceram Soc 2000, 83: 245–265.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peter Greil.

Additional information

This article is published with open access at Springerlink.com

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Greil, P. Generic principles of crack-healing ceramics. J Adv Ceram 1, 249–267 (2012). https://doi.org/10.1007/s40145-012-0020-2

Download citation

Key words

  • crack healing
  • microstructure modifications
  • oxidation healing
  • MAX phases
  • preceramic polymers