Skip to main content

Ceramics for high level radioactive waste solidification

Abstract

Several countries reprocess their nuclear spent fuel using the Purex process to recover U and Pu as MOX fuel. The high level radioactive waste (HLW) produced during this reprocessing is a complex mixture containing both radioactive (fission products, minor actinides) and non-radioactive elements. Since HLW shows high rate heat release and contains some long half-life and biologically toxic radionuclide, its treatment and disposal technology is complex, difficult and high cost. HLW treatment and disposal become a worldwide challenge and research focus. In order to minimize the potential long-term impact of HLW, studies on enhanced chemical separation processes of long-lived radionuclides are in progress. Two options are then envisaged for these separated radionuclides: (a) transmutation into short-lived or non-radioactive elements, (b) immobilization in highly durable ceramic matrix instead of borosilicate glass. In this paper, we briefly review the composition, structure, processing and product properties of some ceramic candidates for inert matrix fuels (IMF) and the immobilization of high level radioactive waste.

References

  1. [1]

    Sengupta P. A review on immobilization of phosphate containing high level nuclear wastes within glass matrix: Present status and future challenges. J Hazardous Mater 2012, 235–236: 17–28.

    Article  Google Scholar 

  2. [2]

    Abu-Khader MM. Recent advances in nuclear power: A review. Prog Nucl Eng 2009, 51: 225–235.

    Article  Google Scholar 

  3. [3]

    Hench LL, Clark DE, Campbell J. High level waste immobilization forms. Nucl Chem Waste Manag 1984, 5: 149–173.

    Article  Google Scholar 

  4. [4]

    Luo SG, Yang JW, Zhu XZ. Synroc solidification of actinide wastes. Acta Chimica Sinica 2000, 58: 1608–1614.

    Google Scholar 

  5. [5]

    Deokattey S, Bhaskar N, Kalyane VL, et al. Borosilicate glass and Synroc R&D for radioactive waste immobilization: An international perspective. JOM -J Minerals Metals Mater Soc 2003, 55: 48–51.

    Article  Google Scholar 

  6. [6]

    Gu ZM. Nuclear Waste Disposal Technique. Beijing: Atomic Energy Press, 2009: 359–368.

    Google Scholar 

  7. [7]

    Babelot JF, Conrad R, Gruppelaar H, et al. Development of fuels for the transmutation in the frame of the EFTTRA European collaboration. Int. Conf. on Future Nuclear Systems (Global’97). Yokohama, 1997, 1: 676–679.

    Google Scholar 

  8. [8]

    Degueldre C, Paratte JM. Concepts for an inert matrix fuel: An overview. J Nucl Mater 1999, 274: 1–6.

    Article  Google Scholar 

  9. [9]

    International Atomic Energy Agency. Viability of inert matrix fuel in reducing plutonium amounts in reactors. IAEA-TECDOC-1516, 2006.

  10. [10]

    Chauvin N, Konings RJM, Matzke H. Optimization of inert matrix fuel concepts for americium transmutation. J Nucl Mater 1999, 274: 105–111.

    Article  Google Scholar 

  11. [11]

    Fernandez A, Konings RJM, Somers J. Design and fabrication of specific ceramic-metallic fuels and targets. J Nucl Mater 2003, 319: 44–50.

    Article  Google Scholar 

  12. [12]

    Delage F, Belin R, Chen XN, et al. ADS fuel developments in Europe: Results from the EUROTRANS integrated project. Eng Procedia 2011, 7: 303–313.

    Article  Google Scholar 

  13. [13]

    Information on http://www.ne.doe.gov/pdfFiles/afciFy2005StatusRptToCongress.pdf.

  14. [14]

    Fernandez A, Haas D, Hiernaut JP, et al. Overview of ITU work on inert matrix fuels. In 9th IEMP. 2006.

  15. [15]

    Boidron M, Chauvin N, Garnier JC, et al. Transmutation studies in France, R&D programme on fuels and targets. In Proc. Conf. on Partitioning and Transmutation. Madrid, 2000.

  16. [16]

    Pounchon MA, Ledergerber G, Ingold F, et al. Sphere-pac and VIPAC fuel. Ch 3.11. Compreh Nucl Mater 2012, 3: 275–312.

    Article  Google Scholar 

  17. [17]

    Ewing RC. Ceramic matrices for plutonium disposition. Prog in Nucl Energy 2007, 49: 635–643.

    Article  Google Scholar 

  18. [18]

    Boatner LA, Sales BC. Monazite. In Radioactive Waste Forms for the Future. Lutze W, Ewing RC, Eds. North-Holland, Amsterdam, 1988: 495–564.

    Google Scholar 

  19. [19]

    Roy R, Yang LJ, Alamo J, et al. Single phase NZP ceramic radioactive waste form. In Scientific Basis for Nuclear Waste Management VI. Brookins DG, Ed. North-Holland, Amsterdam, 1983: 15–21.

    Google Scholar 

  20. [20]

    Burnaeva AA, Volkov YF, Krjukova AI. Crystal-chemical features of sodium-Pu(III) double phosphates and certain other f-element phosphates. Radiokhimiya 1994, 36: 289–294.

    Google Scholar 

  21. [21]

    Scheetz BE, Agrawal DK, Breval E, et al. Sodium zirconium phosphate (NZP) as a host structure for nuclear waste immobilization: A review. Waste Manag 1994, 14: 489–505.

    Article  Google Scholar 

  22. [22]

    Yang LJ, Komarneni S, Roy R. Titanium-phosphate (NZP) waste form. Nucl. Chem. Waste Management, Vol. 8. In Advances in Ceramic. Wicks GG, Ross WA Eds. The Am. Ceram. Soc., 1984: 255–262.

  23. [23]

    Ishida M, Kikuchi K, Yanagi T, et al. Leaching behavior of crystalline phosphate waste forms. Nucl Chem Waste Manag 1986, 6: 127–131.

    Article  Google Scholar 

  24. [24]

    Itoh K, Nakayama S. Immobilization of cesium by crystalline zirconium phosphate. J Mater Sci 2002, 37: 1701–1704.

    Article  Google Scholar 

  25. [25]

    Nakayama S, Itoh K. Immobilization of strontium by crystalline zirconium phosphate. J Euro Ceram Soc 2003, 23: 1047–1052.

    Article  Google Scholar 

  26. [26]

    Ringwood AE, Kesson SE, Ware NG. Immobilization of U.S. defense waste using Synroc process. In Scientific Basis for Nuclear Waste Management. New York: Plenum Press, 1980: 265.

    Chapter  Google Scholar 

  27. [27]

    Ringwood AE, Kesson SE, Ware NG, et al. Immobilization of high level nuclear reactor wastes in Synroc. Nature 1979, 278: 219–223.

    Article  Google Scholar 

  28. [28]

    Vinokurov SE, Kulyako YM. Immobilization of actinides in pyrochlore-type matrices produced by self-propagating high-temperature synthesis. C R Chimie 2007, 10: 1128–1130.

    Article  Google Scholar 

  29. [29]

    US DOE. Nuclear waste materials handbook (test methods). Rep. DOE/TIC-11400, Washington, DC: Technical Information Center, 1981.

    Google Scholar 

  30. [30]

    Ringwood AE, Kesson SE, Reeve KD, et al. Synroc. In Radioactive Waste Forms for the Future. Lutze W, Ewing RC, Eds. Amersterdam: Elsevier, 1988: 233–334.

    Google Scholar 

  31. [31]

    Perera DS, Begg BD, Vance ER. Application of crystal chemistry in the development of radioactive wasteforms. The AZo Journal of Materials 2005, DOI: 10.2240/azojomo 0132.

  32. [32]

    Aubin-Chevaldonnet V, Caurant D, Dannoux A, et al. Preparation and characterization of (Ba,Cs)(M,Ti)8O16 (M = Al3+, Fe3+, Ga3+, Cr3+, Sc3+, Mg2+) hollandite ceramics developed for radioactive cesium immobilization. J Nucl Mater 2007, 366: 137–160.

    Article  Google Scholar 

  33. [33]

    Luo SG, Li L, Tang B, et al. Synroc immobilization of high level waste (HLW) bearing a high content of sodium. Waste Manag 1998, 18: 55–59.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tongxiang Liang.

Additional information

This article is published with open access at Springerlink.com

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Wang, L., Liang, T. Ceramics for high level radioactive waste solidification. J Adv Ceram 1, 194–203 (2012). https://doi.org/10.1007/s40145-012-0019-8

Download citation

Key words

  • nuclear spent fuel
  • ceramic immobilization
  • transmutation
  • high level radioactive waste