Towards rational design of low-temperature co-fired ceramic (LTCC) materials

Abstract

High performance low temperature co-fired ceramic (LTCC) dielectrics is highly desired for next generation information technology. The rational design is a key issue for the development of new LTCC materials. In comparison to the design of conventional electroceramics, more attention should be paid on the formation process of the material structure for that of LTCC, in addition to the physical properties, due to the special requirement in fabrication processing. In this paper, sintering mechanism of three types of LTCC materials, i.e., glass-ceramics, glass ceramic composite, and glass bonded ceramics, as well as important factors of their dielectric properties are discussed and summarized, and the design strategies for LTCC dielectrics, based on new matrix materials with much lower sintering temperature or higher quality, are proposed. As an example for rational design, oxyfluoride glass-ceramic based dielectrics, a new class of LTCC materials with low ɛr, is analyzed.

Reference

  1. [1]

    Baker A, Lanagan M, Randall C, et al. Integration concepts for the fabrication of LTCC structures. Int J Appl Ceram Technol 2005, 2: 514–520.

    Article  Google Scholar 

  2. [2]

    Wilcox DL, Huang R-F, Dai SX. Enabling materials for wireless multi-layer ceramic integrated circuit (MCIC) application. Ceram Trans 1999, 97: 201–213.

    Google Scholar 

  3. [3]

    Sutono A, Heo D, Chen YE, et al. High-Q LTCC-based passive library for wireless system-on-package(SOP) module development. IEEE Trans Microw Theory Tech 2001, 49: 1715–1724.

    Article  Google Scholar 

  4. [4]

    Tang C-W, You S-F. Design methodologies of LTCC bandpass filters, diplexer, and triplexer with transmission zeros. IEEE Trans Microw Theory Tech 2006, 54: 717–723.

    Article  Google Scholar 

  5. [5]

    Lee C, Sutono A, Han S, et al. A compact LTCC-based Ku-band transmitter module. IEEE Trans Adv Packag 2002, 25: 374–384.

    Article  Google Scholar 

  6. [6]

    Imanaka Y. Multilayered Low Temperature Cofired Ceramics (LTCC) Technology. Germany: Springer, 2005.

    Google Scholar 

  7. [7]

    Thelemann T, Thust H, Hintz M. Using LTCC for microsystems. Microelectron Int 2002, 19(3): 19–23.

    Article  Google Scholar 

  8. [8]

    Gongora-Rubioa MR, Espinoza-Vallejosb P, Sola-Lagunac L, et al. Overview of low temperature co-fired ceramics tape technology for meso-system technology (MsST). Sens Actuator A-Phys 2001, 89(3): 222–241.

    Article  Google Scholar 

  9. [9]

    Narang SB, Bahel S. Low loss dielectric ceramics for microwave applications: A review. J Ceram Process Res 2010, 11: 316–321.

    Google Scholar 

  10. [10]

    Sebastian MT, Jantunen H. Low loss dielectric materials for LTCC applications: A review. Int Mater Rev 2008, 53: 57–90.

    Article  Google Scholar 

  11. [11]

    Dernovsek O, Eberstein M, Schiller WA. LTCC glass-ceramic composites for microwave application. J Eur Ceram Soc 2001, 21: 1693–1697.

    Article  Google Scholar 

  12. [12]

    Kita J, Moos R. Development of LTCC materials and their application-an review. J Microelectron Electron Compon Mater 2008, 38: 219–224.

    Google Scholar 

  13. [13]

    Choi Y-J, Park J-H, Ko W-J, et al. Co-firing and shrinkage matching in low- and middle-permittivity dielectric dompositions for a low-temperature co-fired ceramics system. J Am Ceram Soc 2006, 89: 562–567.

    Article  Google Scholar 

  14. [14]

    Bienert C, Roosen A. Characterization and improvement of LTCC composite materials for application at elevated temperatures. J Eur Ceram Soc 2010, 30: 369–374.

    Article  Google Scholar 

  15. [15]

    Gong X, Chappell WJ, Katehi LPB. Multifunctional substrates for high-frequency applications. Microw Wirel Compon Lett 2003, 13: 428–430.

    Article  Google Scholar 

  16. [16]

    Eberstein M, Rabe T, Schiller WA. Influences of the glass phase on densification, microstructure, and properties of low-temperature co-fired ceramics. Int J Appl Ceram Technol 2006, 3: 428–436.

    Article  Google Scholar 

  17. [17]

    Jantunen H, Kangasvieri Vähäkangas TJ, Leppävuori S. Design aspects of microwave components with LTCC technique. J Eur Ceram Soc 2003, 23: 2541–2548.

    Article  Google Scholar 

  18. [18]

    Baker A, Lanagan M, Randall C, et al. Integration concepts for the fabrication of LTCC structures. Int J Appl Ceram Technol 2005, 2: 514–520.

    Article  Google Scholar 

  19. [19]

    Jones WK, Liu Y, Larsen B, et al. Chemical, structural, and mechanical properties of the LTCC tapes. Int J Microc Electron Packag 2000, 23(4): 469–473.

    Google Scholar 

  20. [20]

    Valant M, Suvorov D. Chemical compatibility between silver electrodes and low-firing binaryoxide compounds: Conceptual study. J Am Ceram Soc 2000, 83: 2721–2729.

    Article  Google Scholar 

  21. [21]

    Ollagnier JB, Guillon O, Rödel J. Viscosity of LTCC determined by discontinuous sinter-forging. Int J ApplCeram Technol 2006, 3: 437–441.

    Article  Google Scholar 

  22. [22]

    Lu G-Q, Sutterlin RC, Gupta TK. Effect of mismatched sintering kinetics on camber in a low-temperature cofired ceramic package. J Am Ceram Soc 1993, 76: 1907–1914.

    Article  Google Scholar 

  23. [23]

    Mori N, Sugimoto Y, Harada J, et al. Dielectric properties of new glass-ceramics for LTCC applied to microwave or millimeter-wave frequencies. J Eur Ceram Soc 2006, 26(10–11): 1925–1928.

    Article  Google Scholar 

  24. [24]

    Rabe T, Gemeinert M, Schiller WA. Development of advanced low temperature cofired ceramics (LTCC). Key Eng Mater 2004, 264–268: 1181–1184.

    Article  Google Scholar 

  25. [25]

    Muralidhar AS, Shaikh GJ, Roberts DL, et al. Low dielectric low temperature fried glass ceramics. US Patent 5164342, 1992.

  26. [26]

    Hartmann HS. Crystallizable, low dielectric constant, low dielectric loss composition. US Patent 5024975, 1991.

  27. [27]

    Chung LL, Jenq GD, Bi SC. Low temperature sintering and crystallisation behaviour of low loss anorthite-based glass-ceramics. J Mater Sci 2003, 38: 693–698.

    Article  Google Scholar 

  28. [28]

    Chang CR, Jean JH. Crystallization kinetics and mechanism of low-dielectric, low-temperature, cofirable CaO-B2O3-SiO2 glass-Ceramics. J Am Ceram Soc 1999, 82: 1725–1732.

    Article  Google Scholar 

  29. [29]

    Shapiro AA, Kubota N, Yu K, et al. Stress testing of a recrystallizing CaO-B2O3-SiO2 glassceramic with Ag electrodes for high frequency electronic packaging. J Electron Mater, 2001, 30: 386–390.

    Article  Google Scholar 

  30. [30]

    Imanaka Y, Aoki S, Kamehara N, et al. Crystallization of low temperature fired glass/ceramic composite. J Ceram Soc Jpn 1987, 95: 1119–1121.

    Google Scholar 

  31. [31]

    Imanaka Y, Yamazaki K, Aoki S, et al. Effect of alumina addition on crystallization of borosilicate glass. J Ceram Soc Jpn 1989, 97: 309–313.

    Article  Google Scholar 

  32. [32]

    Seo YJ, Jung JH, Cho YS, et al. Influences of particle size of alumina filler in an LTCC system. J Am Ceram Soc 2001, 90: 649–652.

    Article  Google Scholar 

  33. [33]

    Jean JH, Chang CR, Chang RL, et al. Effect of alumina particle size on prevention of crystal growth in low-k silica dielectric composite. Mater Chem Phys 1995, 40: 50–55.

    Article  Google Scholar 

  34. [34]

    Müller R, Meszaros R, Peplinski B, et al. Dissolution of alumina, sintering, and crystallization in glass ceramic composites for LTCC. J Am Ceram Soc 2009, 92: 1703–1708.

    Article  Google Scholar 

  35. [35]

    Wang HP, Xu SQ, Lu SQ, et al. Dielectric properties and microstructures of CaSiO3 ceramics with B2O3 addition. Ceram Int 2009, 35: 2715–2718.

    Article  Google Scholar 

  36. [36]

    Kim KS, Shim SH, Kim S, et al. Microwave dielectric properties of ceramic/glass composites with bismuth-zinc borosilicate glass. J Ceram Process Res 2010, 11: 47–51.

    Google Scholar 

  37. [37]

    Dou G, Zhou D, Guo M, et al. Low-temperature sintered Zn2SiO4-CaTiO3 ceramics with near-zero temperature coefficient of resonant frequency. J Alloys Compd 2012, 513: 466–473.

    Article  Google Scholar 

  38. [38]

    Wang R, Zhou J, Zhao H. Oxyfluoride glass-silica ceramic composite for low temperature co-fired ceramics. J Eur Ceram Soc 2008, 28(15): 2877–2881.

    Article  Google Scholar 

  39. [39]

    Chen GH. Effect of replacement of MgO by CaO on sintering, crystallization and properties of MgO-Al2O3-SiO2 system glass-ceramics. J Mater Sci 2007, 42: 7239–7244.

    Article  Google Scholar 

  40. [40]

    Kim JR, Choi GK, Yim DK, et al. Thermal and dielectric properties of ZnO-B2O3-MO3 glasses (M = W, Mo). J Electroceram 2006, 17(1): 65–69.

    Google Scholar 

  41. [41]

    Hsiang HI, His CH, Huang CC, et al. Sintering behavior and dielectric properties of BaTiO3 ceramics with glass addition for internal capacitor of LTCC. J Alloys Compd 2008, 459: 307–310.

    Article  Google Scholar 

  42. [42]

    Kwon K, Lanagan MT, Shrout TR. Synthesis of BaTiTe3O9 ceramics for LTCC application and its dielectric properties. J Ceram Soc Jpn 2005, 113: 216–219.

    Article  Google Scholar 

  43. [43]

    Tong JX, Zhang QL, Yang Y, et al. Low-temperature firing and microwave dielectric properties of Ca[(Li1/3Nb2/3)0.84Ti0.16]O3-δ ceramics for LTCC applications. J Am Ceram Soc 2007, 90: 845–849.

    Article  Google Scholar 

  44. [44]

    Knickerbocker SH, Kumar AH, Herron LW. Cordierite glass-ceramics for multilayer ceramic packaging. J Am Ceram Soc Bull 1993, 72: 90–95.

    Google Scholar 

  45. [45]

    Lo CL, Duh JG, Chiou BS, et al. Low-temperature sintering and microwave dielectric properties of anorthite-based glass-ceramics. J Am Ceram Soc 2004, 85: 2230–2235.

    Article  Google Scholar 

  46. [46]

    Frenkel J. Kinetic Theory of Liquids. UK: Oxford University Press, 1946: 424.

    Google Scholar 

  47. [47]

    Rao RRT. Ceramic and glass packaging in the 1990s. J Am Ceram Soc 1991, 74: 895–908.

    Article  Google Scholar 

  48. [48]

    Nishigaki S, Yano S, Fukuta J, et al. A new multilayered low-temperature-fired ceramic substrate. In: Proceedings of the 1985 International Symposium of Hybrid Microelectronics (ISHM). Anaheim, USA, 1985: 225–234.

  49. [49]

    Kuczynski GC, Zaplatynskyj I. Sintering of glass. J Am Ceram Soc 1956, 39: 349–350.

    Article  Google Scholar 

  50. [50]

    Cutler IB, Henrichsen RE. Effect of particle shape on the kinetics of sintering of glass. J Am Ceram Soc 1968, 51: 604–605.

    Article  Google Scholar 

  51. [51]

    Yue ZX, Yan J, Zhao F, et al. Low-temperature sintering and microwave dielectric properties of ZnTiO3-based LTCC materials. J Electroceram 2008, 21: 141–144.

    Article  Google Scholar 

  52. [52]

    Shin HS, Wang JH, Kim JH. Glass infilteration in bonding of BaTiO2 and Al2O3 layers. Mater Sci Forum 2007, 534–536: 1457–1460.

    Article  Google Scholar 

  53. [53]

    Kim MH, Lim JB, Kim JC, et al. Synthesis of BaCu(B2O5) ceramics and their effect on the sintering temperature and microwave dielectric properties of Ba(Zn1/3Nb2/3)O3 ceramics. J Am Ceram Soc 2006, 89: 3124–3128.

    Article  Google Scholar 

  54. [54]

    Kingery WD, Bowen HK, Uhlmann DR. Introduction to Ceramics. John Wiley & Sons Inc., 1976.

  55. [55]

    Imanaka Y. Material technology of LTCC for high frequency application. Mater Integr 2002, 15(12): 44–48.

    Google Scholar 

  56. [56]

    Wang R, Zhou J, Li B, et al. CaF2-AlF3-SiO2 glass-ceramic with low dielectric constant for LTCC application. J Alloys Compd 2010, 490: 204–207.

    Article  Google Scholar 

  57. [57]

    Wang R, Zhou J, Li B, et al. Study of the properties of CaF2-AlF3-SiO2 oxyfluoride glass-ceramic system. Rare Met Mate Eng 2009, 38: 1117–1119.

    Google Scholar 

  58. [58]

    Wang R, Zhou J, Huang XG, et al. Oxyfluoride glass-ceramic composites for low temperature co-fired ceramic substrate. Ferroelectrics 2009, 388: 31–35.

    Article  Google Scholar 

  59. [59]

    Zhou J, Wang R, Zhao HJ. Oxyfluoride glass-ceramic LTCC materials and their fabrication methods. Chinese Patent 200810056019.2.

  60. [60]

    Zhou J, Wang R, Li B, et al. A glass-ceramic composite LTCC material with tunable permittivity. Chinese Patent 201010174057.5.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ji Zhou.

Additional information

This article is published with open access at Springerlink.com

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Zhou, J. Towards rational design of low-temperature co-fired ceramic (LTCC) materials. J Adv Ceram 1, 89–99 (2012). https://doi.org/10.1007/s40145-012-0011-3

Download citation

Key words

  • LTCC
  • sintering
  • dielectric properties
  • material design