Skip to main content

Advertisement

Log in

Human Molecular Neurocytogenetics

  • Cytogenetics (T Liehr, Section Editor)
  • Published:
Current Genetic Medicine Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

During the last decade, genomics has delivered basic insight into somatic genome variations contributing to human neuronal diversity in health and disease. Here, we review research on somatic chromosomal mosaicism and chromosome instability in the developing and adult (normal and diseased) human brain, representing the emerging field of molecular neurocytogenetics.

Recent Findings

Chromosome instability and somatic chromosomal mosaicism were found to be involved in human brain development. Additionally, recent studies have highlighted the impact of neuronal aneuploidy and brain-specific chromosome instability on normal and pathological neurodevelopment and brain aging.

Summary

Neurocytogenomic variations are nowadays thought to play a critical role in human brain development and aging. Chromosome instability is likely to be an element of pathogenetic cascades in a variety of brain diseases. Future studies are likely to reveal new neurocytogenetic/neurocytogenomic mechanisms for formation of human neuronal diversity and mental illness. Finally, human molecular neurocytogenetics may be recognized as an integral component of current biomedical science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major Importance

  1. • Iourov IY, Vorsanova SG, Yurov YB. Chromosomal variation in mammalian neuronal cells: known facts and attractive hypotheses. Int Rev Cytol. 2006;249:143–91. https://doi.org/10.1016/S0074-7696(06)49003-3 Defined the essence of human molecular neurocytogenetics as an independent field of biomedical research through postulating the theoretical and technological basis.

    Article  CAS  PubMed  Google Scholar 

  2. • Kingsbury MA, Yung YC, Peterson SE, Westra JW, Chun J. Aneuploidy in the normal and diseased brain. Cell Mol Life Sci. 2006;63:2626–41. https://doi.org/10.1007/s00018-006-6169-5 Defined the essence of human molecular neurocytogenetics as an independent field of biomedical research through postulating the theoretical and technological basis.

    Article  CAS  PubMed  Google Scholar 

  3. Iourov IY, Vorsanova SG, Yurov YB. Single cell genomics of the brain: focus on neuronal diversity and neuropsychiatric diseases. Curr Genomics. 2012;13:477–88. https://doi.org/10.2174/138920212802510439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Insel TR. Brain somatic mutations: the dark matter of psychiatric genetics? Mol Psychiatry. 2014;19(2):156–8. https://doi.org/10.1038/mp.2013.168.

    Article  CAS  PubMed  Google Scholar 

  5. McConnell MJ, Moran JV, Abyzov A, Akbarian S, Bae T, Cortes-Ciriano I, et al. Intersection of diverse neuronal genomes and neuropsychiatric disease: the brain somatic mosaicism network. Science. 2017;356:eaal1641. https://doi.org/10.1126/science.aal1641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rohrback S, Siddoway B, Liu CS, Chun J. Genomic mosaicism in the developing and adult brain. Dev Neurobiol. 2018. https://doi.org/10.1002/dneu.22626.

    Article  Google Scholar 

  7. Iourov IY, Vorsanova SG, Yurov YB. Somatic genome variations in health and disease. Curr Genomics. 2010;11:387–96. https://doi.org/10.2174/2F138920210793176065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Campbell IM, Shaw CA, Stankiewicz P, Lupski JR. Somatic mosaicism: implications for disease and transmission genetics. Trends Genet. 2015;31(7):382–92. https://doi.org/10.1016/j.tig.2015.03.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bushman DM, Chun J. The genomically mosaic brain: aneuploidy and more in neural diversity and disease. Semin Cell Dev Biol. 2013;24:357–69. https://doi.org/10.1016/j.semcdb.2013.02.003.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Iourov IY, Vorsanova SG, Yurov YB. Chromosomal mosaicism goes global. Mol Cytogenet. 2008;1:26. https://doi.org/10.1186/1755-8166-1-26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. De S. Somatic mosaicism in healthy human tissues. Trends Genet. 2011;27:217–23. https://doi.org/10.1016/j.tig.2011.03.002.

    Article  CAS  PubMed  Google Scholar 

  12. Yurov YB, Vorsanova SG, Iourov IY. Ontogenetic variation of the human genome. Curr Genomics. 2010;11:420–5. https://doi.org/10.2174/138920210793175958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vijg J. Somatic mutations, genome mosaicism, cancer and aging. Curr Opin Genet Dev. 2014;26:141–9. https://doi.org/10.1016/j.gde.2014.04.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Iourov IY, Vorsanova SG, Yurov YB. Intercellular genomic (chromosomal) variations resulting in somatic mosaicism: mechanisms and consequences. Curr Genomics. 2006;7:435–46. https://doi.org/10.2174/138920206779116756.

    Article  CAS  Google Scholar 

  15. Vorsanova SG, Yurov YB, Iourov IY. Human interphase chromosomes: a review of available molecular cytogenetic technologies. Mol Cytogenet. 2010;3(1):1. https://doi.org/10.1186/1755-8166-3-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yurov YB, Vorsanova SG, Iourov IY, editors. Human interphase chromosomes: biomedical aspects. New York: Springer; 2013. https://doi.org/10.1007/978-1-4614-6558-4.

    Book  Google Scholar 

  17. Bakker B, van den Bos H, Lansdorp PM, Foijer F. How to count chromosomes in a cell: an overview of current and novel technologies. BioEssays. 2015;37(5):570–7. https://doi.org/10.1002/bies.201400218.

    Article  PubMed  Google Scholar 

  18. Abyzov A, Urban AE, Vaccarino FM. Principles and approaches for discovery and validation of somatic mosaicism in the human brain. Neuromethods. 2017;131:3–24. https://doi.org/10.1007/978-1-4939-7280-7_1.

    Article  CAS  Google Scholar 

  19. Muotri AR, Gage FH. Generation of neuronal variability and complexity. Nature. 2006;441:1087–93. https://doi.org/10.1038/nature04959.

    Article  CAS  PubMed  Google Scholar 

  20. Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC. Neuronal cell death. Physiol Rev. 2018;98:813–80. https://doi.org/10.1152/physrev.00011.2017.

    Article  PubMed  Google Scholar 

  21. Iourov IY, Vorsanova SG, Yurov YB. Molecular cytogenetics and cytogenomics of brain diseases. Curr Genomics. 2008;9:452–65. https://doi.org/10.2174/138920208786241216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Siegel JJ, Amon A. New insights into the troubles of aneuploidy. Annu Rev Cell Dev Biol. 2012;28:189–214. https://doi.org/10.1146/annurev-cellbio-101011-155807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Taylor TH, Gitlin SA, Patrick JL, Crain JL, Wilson JM, Griffin DK. The origin, mechanisms, incidence and clinical consequences of chromosomal mosaicism in humans. Hum Reprod Update. 2014;20:571–81. https://doi.org/10.1093/humupd/dmu016.

    Article  CAS  PubMed  Google Scholar 

  24. • Yurov YB, Iourov IY, Vorsanova SG, Liehr T, Kolotii AD, Kutsev SI, et al. Aneuploidy and confined chromosomal mosaicism in the developing human brain. PLoS One. 2007;2:e558. https://doi.org/10.1371/journal.pone.0000558 Provides the unique data on chromosomal mosaicism and chromosome instability hallmarking the human developing brain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yurov YB, Iourov IY, Monakhov VV, Soloviev IV, Vostrikov VM, Vorsanova SG. The variation of aneuploidy frequency in the developing and adult human brain revealed by an interphase FISH study. J Histochem Cytochem. 2005;53:385–90. https://doi.org/10.1369/jhc.4A6430.2005.

    Article  CAS  PubMed  Google Scholar 

  26. Iourov IY, Soloviev IV, Vorsanova SG, Monakhov VV, Yurov YB. An approach for quantitative assessment of fluorescence in situ hybridization (FISH) signals for applied human molecular cytogenetics. J Histochem Cytochem. 2016;53:401–8. https://doi.org/10.1369/jhc.4A6419.2005.

    Article  CAS  Google Scholar 

  27. Iourov IY. Quantitative fluorescence in situ hybridization (QFISH). Methods Mol Biol. 2017;1541:143–9. https://doi.org/10.1007/978-1-4939-6703-2_13.

    Article  CAS  PubMed  Google Scholar 

  28. Iourov IY, Liehr T, Vorsanova SG, Yurov YB. Interphase chromosome-specific multicolor banding (ICS-MCB): a new tool for analysis of interphase chromosomes in their integrity. Biomol Eng. 2007;24:415–7. https://doi.org/10.1016/j.bioeng.2007.05.003.

    Article  CAS  PubMed  Google Scholar 

  29. • Iourov IY, Vorsanova SG, Liehr T, Kolotii AD, Yurov YB. Increased chromosome instability dramatically disrupts neural genome integrity and mediates cerebellar degeneration in the ataxia-telangiectasia brain. Hum Mol Genet. 2009;18:2656–69. https://doi.org/10.1093/hmg/ddp207 Provides direct evidences that neurodegeneration can be mediated by chromosome instability and somatic aneuploidy whereas these phenomena are generally accepted to hallmark cancer.

    Article  CAS  PubMed  Google Scholar 

  30. • Iourov IY, Vorsanova SG, Liehr T, Yurov YB. Aneuploidy in the normal, Alzheimer's disease and ataxia-telangiectasia brain: differential expression and pathological meaning. Neurobiol Dis. 2009;34:212–20. https://doi.org/10.1016/j.nbd.2009.01.003 Provides direct evidences that neurodegeneration can be mediated by chromosome instability and somatic aneuploidy whereas these phenomena are generally accepted to hallmark cancer.

    Article  CAS  PubMed  Google Scholar 

  31. Iourov IY, Liehr T, Vorsanova SG, Kolotii AD, Yurov YB. Visualization of interphase chromosomes in postmitotic cells of the human brain by multicolour banding (MCB). Chromosom Res. 2006;14:223–9. https://doi.org/10.1007/s10577-006-1037-6.

    Article  CAS  Google Scholar 

  32. Yurov YB, Iourov IY, Vorsanova SG, Demidova IA, Kravetz VS, Beresheva AK, et al. The schizophrenia brain exhibits low-level aneuploidy involving chromosome 1. Schizophr Res. 2008;98:139–47. https://doi.org/10.1016/j.schres.2007.07.035.

    Article  PubMed  Google Scholar 

  33. Yurov YB, Vorsanova SG, Demidova IA, Kravets VS, Vostrikov VM, Soloviev IV, et al. Genomic instability in the brain: chromosomal mosaicism in schizophrenia. Zh Nevrol Psikhiatr Im S S Korsakova. 2016;116(11):86–91. https://doi.org/10.17116/jnevro201611611186-91.

    Article  CAS  PubMed  Google Scholar 

  34. Yurov YB, Vorsanova SG, Demidova IA, Kolotii AD, Soloviev IV, Iourov IY. Mosaic brain aneuploidy in mental illnesses: an association of low-level post-zygotic aneuploidy with schizophrenia and comorbid psychiatric disorders. Curr Genomics. 2018;19:163–72. https://doi.org/10.2174/1389202918666170717154340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yurov YB, Vorsanova SG, Liehr T, Kolotii AD, Iourov IY. X chromosome aneuploidy in the Alzheimer’s disease brain. Mol Cytogenet. 2014;7:20. https://doi.org/10.1186/1755-8166-7-20.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mosch B, Morawski M, Mittag A, Lenz D, Tarnok A, Arendt T. Aneuploidy and DNA replication in the normal human brain and Alzheimer's disease. J Neurosci. 2007;27(26):6859–67. https://doi.org/10.1523/JNEUROSCI.0379-07.2007.

    Article  CAS  PubMed  Google Scholar 

  37. • Fischer HG, Morawski M, Brückner MK, Mittag A, Tarnok A, Arendt T. Changes in neuronal DNA content variation in the human brain during aging. Aging Cel. 2012;11:628–33. https://doi.org/10.1111/j.1474-9726.2012.00826.x Demonstrates that aneuploidy rates can vary with age in the human brain.

    Article  CAS  Google Scholar 

  38. Arendt T, Mosch B, Morawski M. Neuronal aneuploidy in health and disease: a cytomic approach to understand the molecular individuality of neurons. Int J Mol Sci. 2009;10:1609–27. https://doi.org/10.3390/ijms10041609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Westra JW, Rivera RR, Bushman DM, Yung YC, Peterson SE, Barral S, et al. Neuronal DNA content variation (DCV) with regional and individual differences in the human brain. J Comp Neurol. 2010;518:3981–4000. https://doi.org/10.1002/cne.22436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mokretar K, Pease D, Taanman JW, Soenmez A, Ejaz A, Lashley T, et al. Somatic copy number gains of α-synuclein (SNCA) in Parkinson’s disease and multiple system atrophy brains. Brain. 2018;141:2419–31. https://doi.org/10.1093/brain/awy157.

    Article  Google Scholar 

  41. Villela D, Suemoto CK, Leite R, Pasqualucci CA, Grinberg LT, Pearson P, et al. Increased DNA copy number variation mosaicism in elderly human brain. Neural Plast. 2018;2018:2406170–9. https://doi.org/10.1155/2018/2406170.

    Article  PubMed  PubMed Central  Google Scholar 

  42. • McConnell MJ, Lindberg MR, Brennand KJ, Piper JC, Voet T, Cowing-Zitron C, et al. Mosaic copy number variation in human neurons. Science. 2013;342:632–7. https://doi.org/10.1126/science.1243472 Is one of the most relevant reports on high-resolution genome analysis of individual human neurons using state-of-the-art sequencing techniques.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. • Knouse KA, Wu J, Whittaker CA, Amon A. Single cell sequencing reveals low levels of aneuploidy across mammalian tissues. Proc Natl Acad Sci U S A. 2014;111:13409–14. https://doi.org/10.1073/pnas.1415287111 Is one of the most relevant reports on high-resolution genome analysis of individual human neurons using state-of-the-art sequencing techniques.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. • van den Bos H, Spierings DC, Taudt AS, Bakker B, Porubský D, Falconer E, et al. Single-cell whole genome sequencing reveals no evidence for common aneuploidy in normal and Alzheimer’s disease neurons. Genome Biol. 2016;17:116. https://doi.org/10.1186/s13059-016-0976-2 Is one of the most relevant reports on high-resolution genome analysis of individual human neurons using state-of-the-art sequencing techniques.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pfisterer U, Khodosevich K. Neuronal survival in the brain: neuron type-specific mechanisms. Cell Death Dis. 2017;8:e2643. https://doi.org/10.1038/cddis.2017.64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sheltzer JM, Amon A. The aneuploidy paradox: costs and benefits of an incorrect karyotype. Trends Genet. 2011;27:446–53. https://doi.org/10.1016/j.tig.2011.07.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Oromendia AB, Amon A. Aneuploidy: implications for protein homeostasis and disease. Dis Model Mech. 2014;7:15–20. https://doi.org/10.1242/dmm.013391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dürrbaum M, Storchová Z. Effects of aneuploidy on gene expression: implications for cancer. FEBS J 201. 2016;283:791–802. https://doi.org/10.1111/febs.13591.

    Article  CAS  Google Scholar 

  49. Iourov IY, Vorsanova SG, Yurov YB. Interphase chromosomes of the human brain: the biological and clinical meaning of neural aneuploidy. In: Yurov YB, Vorsanova SG, Iourov IY, editors. Human interphase chromosomes: biomedical aspects. New York: Springer; 2013. https://doi.org/10.1007/978-1-4614-6558-4_4.

    Chapter  Google Scholar 

  50. Heng HH, Bremer SW, Stevens JB, Horne SD, Liu G, Abdallah BY, et al. Chromosomal instability (CIN): what it is and why it is crucial to cancer evolution. Cancer Metastasis Rev. 2013;32:325–40. https://doi.org/10.1007/s10555-013-9427-7.

    Article  PubMed  Google Scholar 

  51. Valind A, Jin Y, Gisselsson D. Elevated tolerance to aneuploidy in cancer cells: estimating the fitness effects of chromosome number alterations by in silico modeling of somatic genome evolution. PLoS One. 2013;8:e70445. https://doi.org/10.1371/journal.pone.0070445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tanaka K, Hirota T. Chromosomal instability: a common feature and a therapeutic target of cancer. Biochim Biophys Acta. 2016;1866:64–75. https://doi.org/10.1016/j.bbcan.2016.06.002.

    Article  CAS  PubMed  Google Scholar 

  53. Iourov IY, Vorsanova SG, Yurov YB. Developmental neural chromosome instability as a possible cause of childhood brain cancers. Med Hypotheses. 2009;72:615–6. https://doi.org/10.1016/j.mehy.2008.12.003.

    Article  PubMed  Google Scholar 

  54. • Kingsbury MA, Friedman B, McConnell MJ, Rehen SK, Yang AH, Kaushal D, et al. Aneuploid neurons are functionally active and integrated into brain circuitry. Proc Natl Acad Sci U S A. 2005;102:6143–7. https://doi.org/10.1073/pnas.0408171102 Demonstrates that abnormal (aneuploid) neurons are an integral part of the mammalian nervous system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Devalle S, Sartore RC, Paulsen BS, Borges HL, Martins RA, Rehen SK. Implications of aneuploidy for stem cell biology and brain therapeutics. Front Cell Neurosci. 2012;6(36). https://doi.org/10.3389/fncel.2012.00036.

  56. Dumanski JP, Piotrowski A. Structural genetic variation in the context of somatic mosaicism. Methods Mol Biol. 2012;838:249–72. https://doi.org/10.1007/978-1-61779-507-7_12.

    Article  CAS  PubMed  Google Scholar 

  57. Paquola ACM, Erwin JA, Gage FH. Insights into the role of somatic mosaicism in the brain. Curr Opin Syst Biol. 2017;1:90–4. https://doi.org/10.1016/j.coisb.2016.12.004.

    Article  PubMed  Google Scholar 

  58. Rosenkrantz JL, Carbone L. Investigating somatic aneuploidy in the brain: why we need a new model. Chromosoma. 2017;126:337–50. https://doi.org/10.1007/s00412-016-0615-4.

    Article  PubMed  Google Scholar 

  59. Vorsanova SG, Yurov YB, Soloviev IV, Iourov IY. Molecular cytogenetic diagnosis and somatic genome variations. Curr Genomics. 2010;11:440–6. https://doi.org/10.2174/138920210793176010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yurov YB, Vorsanova SG, Soloviev IV, Ratnikov AM, Iourov IY. FISH-based assays for detecting genomic (chromosomal) mosaicism in human brain cells. Neuromethods. 2017;131:27–41. https://doi.org/10.1007/978-1-4939-7280-7_2.

    Article  CAS  Google Scholar 

  61. Iourov IY, Vorsanova SG, Pellestor F, Yurov YB. Brain tissue preparations for chromosomal PRINS labeling. Methods Mol Biol. 2006;334:123–32. https://doi.org/10.1385/1-59745-068-5:123.

    Article  PubMed  Google Scholar 

  62. Andriani GA, Vijg J, Montagna C. Mechanisms and consequences of aneuploidy and chromosome instability in the aging brain. Mech Ageing Dev. 2017;161:19–36. https://doi.org/10.1016/j.mad.2016.03.007.

    Article  CAS  PubMed  Google Scholar 

  63. Leija-Salazar M, Piette C, Proukakis C. Review: somatic mutations in neurodegeneration. Neuropathol Appl Neurobiol. 2018;44:267–85. https://doi.org/10.1111/nan.12465.

    Article  CAS  PubMed  Google Scholar 

  64. • Yurov YB, Vostrikov VM, Vorsanova SG, Monakhov VV, Iourov IY. Multicolor fluorescent in situ hybridization on post-mortem brain in schizophrenia as an approach for identification of low-level chromosomal aneuploidy in neuropsychiatric diseases. Brain and Development. 2001;23(Suppl 1):S186–90. https://doi.org/10.1016/S0387-7604(01)00363-1 The first study in the field of human molecular neurocytogenetics.

    Article  PubMed  Google Scholar 

  65. Bajic V, Spremo-Potparevic B, Zivkovic L, Isenovic ER, Arendt T. Cohesion and the aneuploid phenotype in Alzheimer’s disease: a tale of genome instability. Neurosci Biobehav Rev. 2015;55:365–74. https://doi.org/10.1016/j.neubiorev.2015.05.010.

    Article  CAS  PubMed  Google Scholar 

  66. Yurov YB, Vorsanova SG, Iourov IY, Demidova IA, Beresheva AK, Kravetz VS, et al. Unexplained autism is frequently associated with low-level mosaic aneuploidy. J Med Genet. 2007;44:521–5. https://doi.org/10.1136/jmg.2007.049312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Vorsanova SG, Yurov IY, Demidova IA, Voinova-Ulas VY, Kravets VS, Solov’ev IV, et al. Variability in the heterochromatin regions of the chromosomes and chromosomal anomalies in children with autism: identification of genetic markers of autistic spectrum disorders. Neurosci Behav Physiol. 2007;37(6):553–8. https://doi.org/10.1007/s11055-007-0052-1.

    Article  CAS  PubMed  Google Scholar 

  68. Vorsanova SG, Voinova VY, Yurov IY, Kurinnaya OS, Demidova IA, Yurov YB. Cytogenetic, molecular-cytogenetic, and clinical-genealogical studies of the mothers of children with autism: a search for familial genetic markers for autistic disorders. Neurosci Behav Physiol. 2010;40(7):745–56. https://doi.org/10.1007/s11055-010-9321-5.

    Article  CAS  PubMed  Google Scholar 

  69. Dou Y, Yang X, Li Z, Wang S, Zhang Z, Ye AY, et al. Postzygotic single-nucleotide mosaicisms contribute to the etiology of autism spectrum disorder and autistic traits and the origin of mutations. Hum Mutat. 2017;38:1002–13. https://doi.org/10.1002/humu.23255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Iourov I, Vorsanova S, Liehr T, Zelenova M, Kurinnaia O, Vasin K, Yurov Y. Chromothripsis as a mechanism driving genomic instability mediating brain diseases. Mol Cytogenet 2017:10(Suppl 1):20(O2). https://doi.org/10.1186/s13039-017-0319-3.

  71. Kim J, Shin JY, Kim JI, Seo JS, Webster MJ, Lee D, et al. Somatic deletions implicated in functional diversity of brain cells of individuals with schizophrenia and unaffected controls. Sci Rep. 2014;4(3807). https://doi.org/10.1038/srep03807.

  72. Sakai M, Watanabe Y, Someya T, Araki K, Shibuya M, Niizato K, et al. Assessment of copy number variations in the brain genome of schizophrenia patients. Mol Cytogenet. 2015;8(46):46. https://doi.org/10.1186/s13039-015-0144-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Arendt T, Brückner MK, Lösche A. Regional mosaic genomic heterogeneity in the elderly and in Alzheimer's disease as a correlate of neuronal vulnerability. Acta Neuropathol. 2015;130:501–10. https://doi.org/10.1007/s00401-015-1465-5.

    Article  CAS  PubMed  Google Scholar 

  74. • Arendt T, Brückner MK, Mosch B, Lösche A. Selective cell death of hyperploid neurons in Alzheimer’s disease. Am J Pathol. 2010;177:15–20. https://doi.org/10.2353/ajpath.2010.090955 Shows that neuronal aneuploidy is able to cause selective cell death.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Potter H, Granic A, Caneus J. Role of trisomy 21 mosaicism in sporadic and familial Alzheimer’s disease. Curr Alzheimer Res. 2016;13:7–17. https://doi.org/10.2174/156720501301151207100616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Granic A, Potter H. Mitotic spindle defects and chromosome mis-segregation induced by LDL/cholesterol-implications for Niemann-Pick C1, Alzheimer’s disease, and atherosclerosis. PLoS One. 2013;8:e60718. https://doi.org/10.1371/journal.pone.0060718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bushman DM, Kaeser GE, Siddoway B, Westra JW, Rivera RR, Rehen SK, et al. Genomic mosaicism with increased amyloid precursor protein (APP) gene copy number in single neurons from sporadic Alzheimer’s disease brains. elife. 2015;4:e05116. https://doi.org/10.7554/eLife.05116.

    Article  PubMed Central  Google Scholar 

  78. Caneus J, Granic A, Rademakers R, Dickson DW, Coughlan CM, Chial HJ, et al. Mitotic defects lead to neuronal aneuploidy and apoptosis in frontotemporal lobar degeneration caused by MAPT mutations. Mol Biol Cell. 2018;29:575–86. https://doi.org/10.1091/mbc.E17-01-0031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. • Yang Y, Shepherd C, Halliday G. Aneuploidy in Lewy body diseases. Neurobiol Aging. 2015;36:1253–60. https://doi.org/10.1016/j.neurobiolaging.2014.12.016 Reports on associations between aneuploidy and Lewy body diseases.

    Article  CAS  PubMed  Google Scholar 

  80. Shepherd CE, Yang Y, Halliday GM. Region- and cell-specific aneuploidy in brain aging and neurodegeneration. Neuroscience. 2018;374:326–34. https://doi.org/10.1016/j.neuroscience.2018.01.050.

    Article  CAS  PubMed  Google Scholar 

  81. Hochstenbach R, Buizer-Voskamp JE, Vorstman JA, Ophoff RA. Genome arrays for the detection of copy number variations in idiopathic mental retardation, idiopathic generalized epilepsy and neuropsychiatric disorders: lessons for diagnostic workflow and research. Cytogenet Genome Res. 2011;135:174–202. https://doi.org/10.1159/000332928.

    Article  CAS  PubMed  Google Scholar 

  82. Foley C, Corvin A, Nakagome S. Genetics of schizophrenia: ready to translate? Curr Psychiatry Rep. 2017;19(61):61. https://doi.org/10.1007/s11920-017-0807-5.

    Article  PubMed  Google Scholar 

  83. Loomes R, Hull L, Mandy WPL. What is the male-to-female ratio in autism spectrum disorder? A systematic review and meta-analysis. J Am Acad Child Adolesc Psychiatry. 2017;56(6):466–74. https://doi.org/10.1016/j.jaac.2017.03.013.

    Article  PubMed  Google Scholar 

  84. Iourov IY, Yurov YB, Vorsanova SG. Mosaic X chromosome aneuploidy can help to explain the male-to-female ratio in autism. Med Hypotheses. 2008;70:456. https://doi.org/10.1016/j.mehy.2007.05.037.

    Article  PubMed  Google Scholar 

  85. Rivet TT, Matson JL. Gender differences in core symptomatology in autism spectrum disorders across the lifespan. J Dev Phys Dis. 2011;23:399–420. https://doi.org/10.1007/s10882-011-9235-3.

    Article  Google Scholar 

  86. Faggioli F, Vijg J, Montagna C. Chromosomal aneuploidy in the aging brain. Mech Ageing Dev. 2011;132:429–36. https://doi.org/10.1016/j.mad.2011.04.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Iourov IY, Vorsanova SG, Yurov YB. Genomic landscape of the Alzheimer’s disease brain: chromosome instability — aneuploidy, but not tetraploidy —mediates neurodegeneration. Neurodegener Dis. 2011, 8:35–7. https://doi.org/10.1159/000315398.

  88. Westra JW, Barral S, Chun J. A reevaluation of tetraploidy in the Alzheimer’s disease brain. Neurodegener Dis. 2009;6:221–9. https://doi.org/10.1159/000236901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yurov YB, Vorsanova SG, Iourov IY. The DNA replication stress hypothesis of Alzheimer’s disease. ScientificWorldJournal. 2011;11:2602–12. https://doi.org/10.1100/2011/625690.

    Article  CAS  PubMed  Google Scholar 

  90. Rothblum-Oviatt C, Wright J, Lefton-Greif MA, McGrath-Morrow SA, Crawford TO, Lederman HM. Ataxia telangiectasia: a review. Orphanet J Rare Dis. 2016;11(159):159. https://doi.org/10.1186/s13023-016-0543-7.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Iourov IY, Vorsanova SG, Yurov YB. Ataxia telangiectasia paradox can be explained by chromosome instability at the subtissue level. Med Hypotheses. 2007;68:716. https://doi.org/10.1016/j.mehy.2006.09.021.

    Article  PubMed  Google Scholar 

  92. Yurov YB, Iourov IY, Vorsanova SG. Neurodegeneration mediated by chromosome instability suggests changes in strategy for therapy development in ataxia-telangiectasia. Med Hypotheses. 2009;73:1075–6. https://doi.org/10.1016/j.mehy.2009.07.030.

    Article  CAS  PubMed  Google Scholar 

  93. Coppedè F, Migliore L. DNA damage in neurodegenerative diseases. Mutat Res. 2015;776:84–97. https://doi.org/10.1016/j.mrfmmm.2014.11.010.

    Article  CAS  PubMed  Google Scholar 

  94. Kennedy SR, Loeb LA, Herr AJ. Somatic mutations in aging, cancer and neurodegeneration. Mech Ageing Dev. 2012;133:118–26. https://doi.org/10.1016/j.mad.2011.10.009.

    Article  CAS  PubMed  Google Scholar 

  95. Yurov YB, Vorsanova SG, Iourov IY. GIN'n'CIN hypothesis of brain aging: deciphering the role of somatic genetic instabilities and neural aneuploidy during ontogeny. Mol Cytogenet. 2009;2:23. https://doi.org/10.1186/1755-8166-2-23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Arendt T, Stieler J, Ueberham U. Is sporadic Alzheimer’s disease a developmental disorder? J Neurochem. 2017;143:396–408. https://doi.org/10.1111/jnc.14036.

    Article  CAS  PubMed  Google Scholar 

  97. Chow HM, Herrup K. Genomic integrity and the ageing brain. Nat Rev Neurosci. 2015;16:672–84. https://doi.org/10.1038/nrn4020.

    Article  CAS  PubMed  Google Scholar 

  98. Iourov IY, Vorsanova SG, Yurov YB. Somatic cell genomics of brain disorders: a new opportunity to clarify genetic-environmental interactions. Cytogenet Genome Res. 2013;139:181–8. https://doi.org/10.1159/000347053.

    Article  CAS  PubMed  Google Scholar 

  99. Iourov IY, Vorsanova SG, Zelenova MA, Korostelev SA, Yurov YB. Genomic copy number variation affecting genes involved in the cell cycle pathway: implications for somatic mosaicism. Int J Genomics. 2015;2015:757680–7. https://doi.org/10.1155/2015/757680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Vorsanova SG, Yurov YB, Iourov IY. Neurogenomic pathway of autism spectrum disorders: linking germline and somatic mutations to genetic-environmental interactions. Curr Bioinforma. 2017;12:19–26. https://doi.org/10.2174/1574893611666160606164849.

    Article  CAS  Google Scholar 

  101. Bennett RJ, Forche A, Berman J. Rapid mechanisms for generating genome diversity: whole ploidy shifts, aneuploidy, and loss of heterozygosity. Cold Spring Harb Perspect Med. 2014;4:a019604. https://doi.org/10.1101/cshperspect.a019604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Misteli T. Higher-order genome organization in human disease. Cold Spring Harb Perspect Biol. 2010;2:a000794. https://doi.org/10.1101/cshperspect.a000794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Iourov IY. To see an interphase chromosome or: how a disease can be associated with specific nuclear genome organization. BioDiscovery. 2012;4(5). https://doi.org/10.7750/BioDiscovery.2012.4.5.

  104. Rajarajan P, Gil SE, Brennand KJ, Akbarian S. Spatial genome organization and cognition. Nat Rev Neurosci. 2016;17:681–91. https://doi.org/10.1038/nrn.2016.124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Iourov IY, Vorsanova SG, Liehr T, Yurov YB. Mosaike im Gehirn des Menschen. Med Genet. 2014;26:342–5. https://doi.org/10.1007/s11825-014-0010-6.

    Article  Google Scholar 

  106. Vorsanova SG, Zelenova MA, Yurov YB, Iourov IY. Behavioral variability and somatic mosaicism: a cytogenomic hypothesis. Curr Genomics. 2018;19:158–62. https://doi.org/10.2174/1389202918666170719165339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The review is dedicated to Dr. Ilia V. Soloviev. Supported by RFBR and CITMA according to the research project №18-515-34005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Y. Iourov.

Ethics declarations

Conflict of Interest

All authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cytogenetics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yurov, Y.B., Vorsanova, S.G. & Iourov, I.Y. Human Molecular Neurocytogenetics. Curr Genet Med Rep 6, 155–164 (2018). https://doi.org/10.1007/s40142-018-0152-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40142-018-0152-y

Keywords

Navigation