Current Genetic Medicine Reports

, Volume 4, Issue 4, pp 163–169 | Cite as

Tissue Specificity of Gene Expression

  • François Aguet
  • Kristin G. ArdlieEmail author
Genomics (S Williams, Section Editor)
Part of the following topical collections:
  1. Genomics


Tissue-specific patterns of gene expression are fundamental to establishing and preserving tissue identity and function, and dysregulation of these patterns underlies a wide range of diseases. Over the past few years, several large-scale efforts driven by the advent of RNA sequencing have established resources of gene expression measurements, across both tissues and individuals, toward building a comprehensive understanding of the specificity and variability of gene expression. We summarize these resources, review insights gained into the tissue specificity of gene expression across transcript classes, including protein-coding and non-coding RNAs, and discuss the developments that will be needed to integrate existing and new resources into a detailed map of gene expression and its regulation across the human body.


Gene expression Tissue specificity RNA-seq Human transcriptome Genomic resources 


Compliance with Ethical Guidelines

Conflict of Interest

François Aguet and Kristin G. Ardlie declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Nica AC, Parts L, Glass D, Nisbet J, Barrett A, Sekowska M, et al. The architecture of gene regulatory variation across multiple human tissues: the MuTHER study. PLoS Genet. 2011;7:e1002003.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA, et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature. 2012;489:391–9.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    FANTOM Consortium and the RIKEN PMI and CLST (DGT), Forrest ARR, Kawaji H, Rehli M, Baillie JK, de Hoon MJL, et al. A promoter-level mammalian expression atlas. Nature. 2014;507:462–70. Presents a detailed map of transcription start sites across human tissues. Google Scholar
  4. 4.
    ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.CrossRefGoogle Scholar
  5. 5.
    •• Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Tissue-based map of the human proteome. Science. 2015;347:1260419–9. Describes the largest characterization of the proteome across human tissues conducted to date. Google Scholar
  6. 6.
    •• GTEx Consortium. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science. American Association for the Advancement of Science; 2015;348:648–60. Summarizes initial results from the largest multi-tissue and multi-individual study of gene expression in humans conducted to date. Google Scholar
  7. 7.
    •• Melé M, Ferreira PG, Reverter F, DeLuca DS, Monlong J, Sammeth M, et al. The human transcriptome across tissues and individuals. Science. 2015;348:660–5. Initial characterization of the human transcriptome across tissues from the GTEx project. Google Scholar
  8. 8.
    Uhlen M, Hallstrom BM, Lindskog C, Mardinoglu A, Ponten F, Nielsen J. Transcriptomics resources of human tissues and organs. Molecular Systems Biology. 2016;12:862.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Gry M, Oksvold P, Ponten F, Uhlen M. Tissue-specific protein expression in human cells, tissues and organs. J Proteomics Bioinform. 2010;3:283–93.Google Scholar
  10. 10.
    Lin S, Lin Y, Nery JR, Urich MA, Breschi A, Davis CA, et al. Comparison of the transcriptional landscapes between human and mouse tissues. Proc Natl Acad Sci USA. 2014;111:17224–9.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Schug J, Schuller W-P, Kappen C, Salbaum JM, Bucan M, Stoeckert CJ. Promoter features related to tissue specificity as measured by Shannon entropy. Genome Biol BioMed Central. 2005;6:R33.Google Scholar
  12. 12.
    Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M, et al. An atlas of active enhancers across human cell types and tissues. Nature. 2014;507:455–61.CrossRefPubMedGoogle Scholar
  13. 13.
    Aguet F, Brown AA, Castel S, Davis JR, Mohammadi P, Segrè AV, et al. Local genetic effects on gene expression across 44 human tissues. bioRxiv 2016.
  14. 14.
    Yeo G, Holste D, Kreiman G, Burge CB. Variation in alternative splicing across human tissues. Genome Biol. 2004;5:R74.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, et al. Landscape of transcription in human cells. Nature. 2012;489:101–8.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    de Hoon M, Shin JW, Carninci P. Paradigm shifts in genomics through the FANTOM projects. Mamm Genome. Springer US; 2015;26:391–402.Google Scholar
  17. 17.
    •• Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y, et al. The landscape of long noncoding RNAs in the human transcriptome. Nat Genet. 2015;47:199–208. Largest compendium of long noncoding RNAs in humans, reporting > 40,000 previously unannotated lncRNAs. Google Scholar
  18. 18.
    Londin E, Loher P, Telonis AG, Quann K, Clark P, Jing Y, et al. Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs. Proc Natl Acad Sci USA. 2015;112:E1106–15.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Freedman JE, Gerstein M, Mick E, Rozowsky J. Diverse human extracellular RNAs are widely detected in human plasma. Nature Commun. 2016. doi:  10.1038/ncomms11106.
  20. 20.
    Joehanes R, Johnson AD, Barb JJ, Raghavachari N, Liu P, Woodhouse KA, et al. Gene expression analysis of whole blood, peripheral blood mononuclear cells, and lymphoblastoid cell lines from the Framingham Heart Study. Physiol Genomics. 2012;44:59–75.CrossRefPubMedGoogle Scholar
  21. 21.
    MacArthur DG, Manolio TA, Dimmock DP, Rehm HL, Shendure J, Abecasis GR, et al. Guidelines for investigating causality of sequence variants in human disease. Nature. 2014;508:469–76.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Byron SA, Van Keuren-Jensen KR, Engelthaler DM, Carpten JD, Craig DW. Translating RNA sequencing into clinical diagnostics: opportunities and challenges. Nature. 2016;17:257–71.Google Scholar
  23. 23.
    Jung H, Lee D, Lee J, Park D, Kim YJ, Park W-Y, et al. Intron retention is a widespread mechanism of tumor-suppressor inactivation. Nat Genet. 2015;47:1242–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Li YI, van de Geijn B, Raj A, Knowles DA, Petti AA, Golan D, et al. RNA splicing is a primary link between genetic variation and disease. Science. American Association for the. Adv Sci. 2016;352:600–4.Google Scholar
  25. 25.
    Rivas MA, Pirinen M, Conrad DF, Lek M, Tsang EK, Karczewski KJ, et al. Effect of predicted protein-truncating genetic variants on the human transcriptome. Science. 2015;348:666–9.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Cummings BB, Marshall JL, Tukiainen T, Lek M, Donkervoort S, Foley AR, et al. Improving genetic diagnosis in Mendelian disease with transcriptome sequencing. bioRxiv., 2016.
  27. 27.
    • Lovén J, Orlando DA, Sigova AA, Lin CY, Rahl PB, Burge CB, et al. Revisiting Global Gene Expression Analysis. Cell. Elsevier Inc; 2012;151:476–82. Summarizes fundamental between-sample normalization issues in RNA sequence data. Google Scholar
  28. 28.
    Danielsson F, James T, Gomez-Cabrero D, Huss M. Assessing the consistency of public human tissue RNA-seq data sets. Brief Bioinform. Oxford University Press; 2015;16:941–9.Google Scholar
  29. 29.
    •• Roadmap Epigenomics Consortium, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518:317–30. Most extensive study of the human epigenome conducted to date. Google Scholar
  30. 30.
    Petryszak R, Keays M, Tang YA, Fonseca NA, Barrera E, Burdett T, et al. Expression Atlas update—an integrated database of gene and protein expression in humans, animals and plants. Nucleic Acids Res. 2016;44:D746–52.CrossRefPubMedGoogle Scholar
  31. 31.
    Buil A, Brown AA, Lappalainen T, Viñuela A, Davies MN, Zheng H-F, et al. Gene-gene and gene-environment interactions detected by transcriptome sequence analysis in twins. Nat Genet. 2015;47:88–91.CrossRefPubMedGoogle Scholar
  32. 32.
    Brown AA, Buil A, Viñuela A, Lappalainen T, Zheng H-F, Richards JB, et al. Genetic interactions affecting human gene expression identified by variance association mapping. eLife. eLife Sciences Publications Limited; 2014;3:e01381–16.Google Scholar
  33. 33.
    Krupp M, Marquardt JU, Sahin U, Galle PR, Castle J, Teufel A. RNA-Seq Atlas–a reference database for gene expression profiling in normal tissue by next-generation sequencing. Bioinformatics. 2012;28:1184–5.CrossRefPubMedGoogle Scholar
  34. 34.
    Castle JC, Armour CD, Löwer M, Haynor D, Biery M, Bouzek H, et al. Digital genome-wide ncRNA expression, including SnoRNAs, across 11 human tissues using PolyA-neutral amplification. Creighton C, editor. PLoS One. Public Library of Science; 2010;5:e11779–9.Google Scholar
  35. 35.
    Yu NY-L, Hallström BM, Fagerberg L, Ponten F, Kawaji H, Carninci P, et al. Complementing tissue characterization by integrating transcriptome profiling from the Human Protein Atlas and from the FANTOM5 consortium. Nucleic Acids Res. 2015;43:6787–98.Google Scholar

Copyright information

© Springer Science + Business Media New York 2016

Authors and Affiliations

  1. 1.Broad Institute of MIT and HarvardCambridgeUSA

Personalised recommendations