Advertisement

Current Genetic Medicine Reports

, Volume 4, Issue 4, pp 155–162 | Cite as

Integrative Networks Illuminate Biological Factors Underlying Gene–Disease Associations

  • Arjun KrishnanEmail author
  • Jaclyn N. Taroni
  • Casey S. GreeneEmail author
Genomics (S Williams, Section Editor)
Part of the following topical collections:
  1. Genomics

Abstract

Purpose of Review

Integrative networks combine multiple layers of biological data into a model of how genes work together to carry out cellular processes. Such networks become more valuable as they become more context-specific, for example, by capturing how genes work together in a certain tissue or cell type. We discuss the applications of these networks to the study of human disease.

Recent Findings

Once constructed, these networks provide the means to identify broad biological patterns underlying genes associated with complex traits and diseases. We cover the different types of integrative networks that currently exist, and how such networks that encompass multiple biological layers are constructed. We highlight how specificity can be incorporated into the reconstruction of different types of biomolecular interactions between genes, using tissue specificity as a motivating example. We discuss examples of cases where networks have been applied to study human diseases and opportunities for new applications.

Summary

Integrative networks with specificity to tissue or other biological features provide new capabilities to researchers engaged in the study of human disease. We expect improved data and algorithms to continue and improve such networks, allowing them to provide more detailed and mechanistic predictions into the context-specific genetic etiology of common diseases.

Keywords

Systems biology Genomics Genetic association Tissue-specificity GWAS PheWAS Integrative biology Protein–protein interaction networks 

Notes

Funding

This work was supported in part by a grant from the Gordon and Betty Moore Foundation’s Data-Driven Discovery Initiative to CSG (GBMF 4552) and funding from the National Institutes of Health under award U01-TR001263.

Compliance with Ethics Guidelines

Disclosure

Arjun Krishnan declares that he has no conflict of interest. Jaclyn N. Taroni reports grants from the NIH during the conduct of study. Casey S. Greene reports grants from the Gordon and Betty Moore Foundation and the National Institutes of Health during the conduct of the study. He also reports grants from the Cystic Fibrosis Foundation, the National Institutes of Health, the National Science Foundation, the Norris-Cotton Cancer Center, and the American Cancer Society, outside the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Langfelder P, et al. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 2008;9(1):559.CrossRefGoogle Scholar
  2. 2.
    Penrod NM, Greene CS, Moore JH. Predicting targeted drug combinations based on Pareto optimal patterns of coexpression network connectivity. Genome Med. 2014;6(4):33.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Rual J-F, et al. Towards a proteome-scale map of the human protein–protein interaction network. Nature. 2005;437(7062):1173–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Menche J, Sharma A, Kitsak M, Ghiassian SD, Vidal M, Loscalzo J, Barabási A-L. Disease networks. Uncovering disease-disease relationships through the incomplete interactome. Science. 2015;347(6224):1257601.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Goh K-I, Cusick ME, Valle D, Childs B, Vidal M, Barabási A-L. The human disease network. Proc Natl Acad Sci USA. 2007;104(2007):8685–90.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Li L, et al. Identification of type 2 diabetes subgroups through topological analysis of patient similarity. Sci Trans Med. 2015;7(311):311ra174.CrossRefGoogle Scholar
  7. 7.
    Wong AK, Park CY, Greene CS, Bongo LA, Guan Y, Troyanskaya OG. IMP: a multi-species functional genomics portal for integration, visualization and prediction of protein functions and networks. Nucleic Acids Res. 2012;40(Web Server):W484–90.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    • Greene CS, et al. Understanding multicellular function and disease with human tissue-specific networks. Nat Genet. 2015;47(6):569–76. The authors build tissue-specific networks for 144 tissues and show that network-based reprioritization of genetic associations can better identify disease genes than the underlying genome-wide association study. Google Scholar
  9. 9.
    Myers CL, Robson D, Wible A, Hibbs MA, Chiriac C, Theesfeld CL, Dolinski K, Troyanskaya OG. Discovery of biological networks from diverse functional genomic data. Genome Biol. 2005;6(13):R114.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Huttenhower C, Haley EM, Hibbs MA, Dumeaux V, Barrett DR, Coller HA, Troyanskaya OG. Exploring the human genome with functional maps. Genome Res. 2009;19(6):1093–106.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Magger O, Waldman YY, Ruppin E, Sharan R. Enhancing the prioritization of disease-causing genes through tissue specific protein interaction networks. PLoS Comput Biol. 2012;8(9):e1002690.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Goya J, Wong AK, Yao V, Krishnan A, Homilius M, Troyanskaya OG. FNTM: a server for predicting functional networks of tissues in mouse. Nucleic Acids Res. 2015;43(W1):W182–7.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Eser S, Schnieke A, Schneider G, Saur D. Oncogenic KRAS signalling in pancreatic cancer. Br J Cancer. 2014;111(5):817–22.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Bryant KL, Mancias JD, Kimmelman AC, Der CJ. KRAS: feeding pancreatic cancer proliferation. Trends Biochem Sci. 2014;39(2):91–100.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Pierson E, et al. Sharing and specificity of co-expression networks across 35 human tissues. PLoS Comput Biol. 2015;11(5):e1004220.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Okada Y, et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature. 2014;506(7488):376–81.CrossRefPubMedGoogle Scholar
  17. 17.
    Vaske CJ, Benz SC, Sanborn JZ, Earl D, Szeto C, Zhu J, Haussler D, Stuart JM. Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. Bioinformatics. 2010;26(12):i237–45.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Mostafavi S, Ray D, Warde-Farley D, Grouios C, Morris Q. GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function. Genome Biol. 2008;9(Suppl 1):S4.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Warde-Farley D, et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 2010;38(Web Server):W214–20.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Guan Y, Myers CL, Hess DC, Barutcuoglu Z, Caudy AA, Troyanskaya OG. Predicting gene function in a hierarchical context with an ensemble of classifiers. Genome Biol. 2008;9(Suppl 1):S3.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Park CY, Wong AK, Greene CS, Rowland J, Guan Y, Bongo LA, Burdine RD, Troyanskaya OG. Functional knowledge transfer for high-accuracy prediction of under-studied biological processes. PLoS Comput Biol. 2013;9(3):e1002957.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Waddington CH. The strategy of the genes. London: Allen & Unwin; 1957.Google Scholar
  23. 23.
    • Bossi A, Lehner B. Tissue specificity and the human protein interaction network. Mol Syst Biol. 2009;5:260. The authors perform one of the first studies to comprehensively analyze tissue-specificity of protein physical interactions. Google Scholar
  24. 24.
    Santos A, Tsafou K, Stolte C, Pletscher-Frankild S, O’Donoghue SI, Jensen LJ. Comprehensive comparison of large-scale tissue expression datasets. PeerJ. 2015;3(2015):e1054.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Uhlén M, Hallström BM, Lindskog C, Mardinoglu A, Pontén F, Nielsen J. Transcriptomics resources of human tissues and organs. Mol Syst Biol. 2016;12(4):862.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Cornish AJ, Filippis I, David A, Sternberg MJE. Exploring the cellular basis of human disease through a large-scale mapping of deleterious genes to cell types. Genome Med. 2015;7(2015):95.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Neph S, Stergachis AB, Reynolds A, Sandstrom R, Borenstein E, Stamatoyannopoulos JA. Circuitry and dynamics of human transcription factor regulatory networks. Cell. 2012;150(6):1274–86.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    • Marbach D, Lamparter D, Quon G, Kellis M, Kutalik Z, Bergmann S. Tissue-specific regulatory circuits reveal variable modular perturbations across complex diseases. Nat Methods. 2016;13(4):366–70. The authors assemble 394 human tissue-specific gene regulatory networks and integrate them with 37 genome-wide association studies to corroborate that disease genes are tightly connected in tissues relevant to the disease. Google Scholar
  29. 29.
    Dowell KG, Simons AK, Wang ZZ, Yun K, Hibbs MA. Cell-type-specific predictive network yields novel insights into mouse embryonic stem cell self-renewal and cell fate. PloS one. 2013;8(2):e56810.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Lefebvre C, et al. A human B-cell interactome identifies MYB and FOXM1 as master regulators of proliferation in germinal centers. Mol Syst Biol. 2010;6(2010):377.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Chikina MD, Huttenhower C, Murphy CT, Troyanskaya OG. Global prediction of tissue-specific gene expression and context-dependent gene networks in Caenorhabditis elegans. PLoS Comput Biol. 2009;5(6):e1000417.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Guan Y, Gorenshteyn D, Burmeister M, Wong AK, Schimenti JC, Handel MA, Bult CJ, Hibbs MA, Troyanskaya OG. Tissue-specific functional networks for prioritizing phenotype and disease genes. PLoS Comput Biol. 2012;8(9):e1002694.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Sarkar AK, Ward LD, Kellis M. Functional enrichments of disease variants across thousands of independent loci in eight diseases. BioRxiv. 2016. doi: 10.1101/048066.Google Scholar
  34. 34.
    Greene CS, Penrod NM, Williams SM, Moore JH. Failure to replicate a genetic association may provide important clues about genetic architecture. PLoS One. 2009;4(6):7.CrossRefGoogle Scholar
  35. 35.
    Zuk O, Hechter E, Sunyaev SR, Lander ES. The mystery of missing heritability: genetic interactions create phantom heritability. Proc Natl Acad Sci. 2012;109(4):1193–8.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Williams SM, Haines JL. Correcting away the hidden heritability. Ann Hum Genet. 2011;75(3):348–50.CrossRefPubMedGoogle Scholar
  37. 37.
    Zhao Y, Chen J, Freudenberg JM, Meng Q, Rajpal DK, Yang X. Network-based identification and prioritization of key regulators of coronary artery disease locisignificance. Arterioscler Thromb Vasr Biol. 2016;36(5):928–41.CrossRefGoogle Scholar
  38. 38.
    Hofree M, Shen JP, Carter H, Gross A, Ideker T. Network-based stratification of tumor mutations. Nat Methods. 2013;10(11):1108–15.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    AlQuraishi M, Koytiger G, Jenney A, MacBeath G, Sorger PK. A multiscale statistical mechanical framework integrates biophysical and genomic data to assemble cancer networks. Nat Genet. 2014;46(12):1363–71.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Qian DC, et al. Identification of shared and unique susceptibility pathways among cancers of the lung, breast, and prostate from genome-wide association studies and tissue-specific protein interactions. Hum Mol Genet. 2015;24(25):7406–20.CrossRefPubMedGoogle Scholar
  41. 41.
    Himmelstein DS, Baranzini SE. Heterogeneous network edge prediction: a data integration approach to prioritize disease-associated genes. PLOS Comput Biol. 2015;11(7):e1004259.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Song A, Yan J, Kim S, Risacher SL, Wong AK, Saykin AJ, Shen L, Greene CS. Network-based analysis of genetic variants associated with hippocampal volume in Alzheimer’s disease: a study of ADNI cohorts. BioData Min. 2016;9(1):3.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    • Krishnan A, Zhang R, Yao V, Theesfeld CL, Wong AK, Tadych A, Volfovsky N, Packer A, Lash A, Troyanskaya OG. Genome-wide characterization of genetic and functional dysregulation in autism spectrum disorder. Nat Neurosci. 2016. The authors use a human brain-specific gene network to predict autism-associated genes across the genome and further elucidate their functional and developmental characteristics. Google Scholar
  44. 44.
    Greene CS, Himmelstein DS. Genetic association-guided analysis of gene networks for the study of complex traits. Circ Cardiovasc Genet. 2016;9(2):179–84.CrossRefPubMedGoogle Scholar
  45. 45.
    • Lage K, Hansen NT, Karlberg EO, Eklund AC, Roque FS, Donahoe PK, Szallasi Z, Jensen TS, Brunak S. A large-scale analysis of tissue-specific pathology and gene expression of human disease genes and complexes. Proc Natl Acad Sci. 2008;105(52):20870–75. The authors link diseases to tissues on a large-scale based on literature mining and further validate these links by showing that disease genes are over-expressed in the affected tissues. Google Scholar
  46. 46.
    Walsh AM, et al. Integrative genomic deconvolution of rheumatoid arthritis GWAS loci into gene and cell type associations. Genome Biol. 2016;17(1):79.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    • Taroni JN, Mahoney JM, Greene CS, Martyanov V, Wood TA, Christmann R, Farber HW, Lafyatis RA, Denton CP, Hinchcliff ME, Pioli PA, Whitfield ML. A novel network approach reveals tissue-specific cellular modulators of the immune-fibrotic axis in systemic sclerosis. BioRxiv. 2016. The authors use multiple tissue-specific networks to prioritize genes and molecular processes perturbed in the rare autoimmune disease systemic sclerosis. Google Scholar
  48. 48.
    Albert FW, Kruglyak L. The role of regulatory variation in complex traits and disease. Nat Rev Genet. 2015;16(4):197–212.CrossRefPubMedGoogle Scholar
  49. 49.
    Lonsdale J, et al. The genotype-tissue expression (gtex) project. Nat Genet. 2013;45(6):580–5.CrossRefGoogle Scholar
  50. 50.
    Ardlie KG, et al. The genotype-tissue expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science. 2015;348(6235):648–60.CrossRefGoogle Scholar
  51. 51.
    Andersson R, et al. An atlas of active enhancers across human cell types and tissues. Nature. 2014;507(7493):455–61.CrossRefPubMedGoogle Scholar
  52. 52.
    Ciofani M, et al. A validated regulatory network for Th17 cell specification. Cell. 2012;151(2):289–303.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Yosef N, et al. Dynamic regulatory network controlling TH17 cell differentiation. Nature. 2013;496(7446):461–8.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Civelek M, Lusis AJ. Systems genetics approaches to understand complex traits. Nat Rev Genet. 2014;15(1):34–48.CrossRefPubMedGoogle Scholar
  55. 55.
    Dobrin R, Zhu J, Molony C, Argman C, Parrish ML, Carlson S, Allan MF, Pomp D, Schadt EE. Multi-tissue coexpression networks reveal unexpected subnetworks associated with disease. Genome Biol. 2009;10(5):R55.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Long Q, Argmann C, Houten SM, Huang T, Peng S, Zhao Y, Tu Z, Zhu J. Inter-tissue coexpression network analysis reveals DPP4 as an important gene in heart to blood communication. Genome Med. 2016;8(1):15.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Ramilowski JA, Goldberg T, Harshbarger J, Kloppmann E, Kloppman E, Lizio M, Satagopam VP, Itoh M, Kawaji H, Carninci P, Rost B, Forrest ARR. A draft network of ligand-receptor-mediated multicellular signalling in human. Nat Commun. 2015;6(2015):7866.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Hall MA, et al. Detection of pleiotropy through a Phenome-wide association study (PheWAS) of epidemiologic data as part of the environmental architecture for genes linked to environment (EAGLE) study. PLoS Genet. 2014;10(12):e1004678.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Denny JC, et al. Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data. Nat Biotechnol. 2013;31(12):1102–10.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Vanunu O, Magger O, Ruppin E, Shlomi T, Sharan R. Associating genes and protein complexes with disease via network propagation. PLoS Comput Biol. 2010;6(1):e1000641.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Himmelstein D, Lizee A, Khankhanian P, Brueggeman L, Chen S, Hessler C, Hadley D, Baranzini S. Rephetio: repurposing drugs on a hetnet. Thinklab. 2015. doi: 10.15363/thinklab.4.20.Google Scholar
  62. 62.
    Whalen S, Truty RM, Pollard KS. Enhancer–promoter interactions are encoded by complex genomic signatures on looping chromatin. Nat Genet. 2016;48(5):488–96.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Tan J, Hammond JH, Hogan DA, Greene CS. ADAGE-based integration of publicly available pseudomonas aeruginosa gene expression data with denoising autoencoders illuminates microbe-host interactions. mSystems. 2016;1(1):e00015–25.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media New York 2016

Authors and Affiliations

  1. 1.Lewis-Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonUSA
  2. 2.Department of Systems Pharmacology and Translational Therapeutics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.Institute for Translational Medicine and Therapeutics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  4. 4.Institute for Biomedical Informatics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  5. 5.270B Carl Icahn LaboratoryPrinceton UniversityPrincetonUSA
  6. 6.Perelman School of MedicinePhiladelphiaUSA

Personalised recommendations