Skip to main content

Advertisement

Log in

Genetic Testing for Eye Diseases: A Comprehensive Guide and Review of Ocular Genetic Manifestations from Anterior Segment Malformation to Retinal Dystrophy

  • Genetic Counseling and Clinical Testing (B LeRoy and N Callanan, Section Editors)
  • Published:
Current Genetic Medicine Reports Aims and scope Submit manuscript

Abstract

Genetic eye diseases are a heterogeneous group that collectively involve every facet of the eye, ocular adnexa and visual system. An individual condition within this group may be rare or common, have an isolated finding or be part of a syndrome, may severely threaten survivability, significantly affect vision or may have no bearing on visual morbidity. There have been treatment successes and safety reports in clinical trials involving vector-based ocular gene therapies, and there are currently a significant number of loci and genes known to contribute to human ocular disease, many of which have been recently discovered due to recent advances in the field of molecular genetics. In addition to obtaining a medical history and performing a comprehensive ocular exam, acquiring a detailed family history, ordering and interpreting specialized vision function tests and genetic laboratory results appropriately, and having knowledge of the ocular genetic features within the diverse categories of ophthalmic genetic conditions are essential components in effectively managing the patients and their families. With the promise of treatment trials, patients’ interest and need for a molecular diagnosis will be on the rise and clinicians need to be prepared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. • Feuer WJ, Schiffman JC, Davis JL, et al. Gene therapy for Leber hereditary optic neuropathy: initial results. Ophthalmology. 2015. doi:10.1016/j.ophtha.2015.10.025. This study reports promising data regarding a treatment trial underway for LHON; for which there were no serious adverse effects and two of five participants experienced an improvement in visual acuity.

  2. • Jacobson SG, Cideciyan AV, Aquirre GD, et al. Improvement in vision: a new goal for treatment of hereditary retinal degenerations. Expert Opin Orphan Drugs. 2015;3(5):563–75. This review provides an overview of the successes of RPE65 gene therapy for LCA by expert who have hands on experience with these clinical trials.

  3. Hanus J, Zhao F, Wang S. Current therapeutic development for atrophic age-related macular degeneration. Br J Ophthalmol. 2015;100:122–7. doi:10.1136/bjophthalmol-2015-306972.

    Article  PubMed  Google Scholar 

  4. • Lee K, Garg S. Navigating the current landscape of clinical genetic testing for inherited retinal dystrophies. Genet Med. 2015;17(4):45–52. This review provides guidance as to which testing may be most appropriate in different clinical scenarios for retinopathies as well as highlighting its limitations.

  5. Sullivan TJ, Lambert SR, Buncic JR, Musarella MA. The optic disc in Leber congenital amaurosis. J Pediatr Ophthalmol Strabismus. 1992;29(4):246–9.

    CAS  PubMed  Google Scholar 

  6. Warburg M. Classification of microphthalmos and coloboma. J Med Genet. 1993;30(8):664–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. • Skalicky SE, White AJ, Grigg JR, et al. Microphthalmia, anophthalmia, and coloboma and associated ocular and systemic features: understanding the spectrum. JAMA Ophthalmol. 2013;131(12):1517–24. This study offers insight into the phenotypic spectrum of microphthalmia, anophthalmia and coloboma abnormalities and their molecular etiology.

  8. Ragge NK, Subak-Sharpe ID, Collin JR. A practical guide to the management of anophthalamia and microphthalmia. Eye. 2007;21:1290–300.

    Article  CAS  PubMed  Google Scholar 

  9. Brooks BP, Traboulsi EI. Anophthalmia, colobomatous, microphthalmia, and optic fissure closure defects. In: Traboulsi EI, editor. Genetic diseases of the eye. 2nd ed. New York: Oxford University Press; 2012.

    Google Scholar 

  10. Verma AS, Fitzpatrick DR. Anophthalmia and microphthalmia. Orhpanet J Rare Dis. 2007;2:47. doi:10.1186/1750-1172-2-47.

    Article  Google Scholar 

  11. Mory A, Ruiz FX, Dagan E, et al. A missence mutation in ALDH1A3 causes isolated microphthalmia/anophthalmia in nine individuals from an inbred Muslim kindred. Eur J Hum Genet. 2014;22(3):419–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Microphthalmia/Anophthalmia/Coloboma Spectrum. GeneReviews. 2015. http://www.ncbi.nlm.nih.gov/books/NBK1378/. Accessed 7 Feb 2016.

  13. Microphthalmia/Anopthalmia. GeneTests. 2016. www.genetest.org. Accessed 7 Feb 2016.

  14. Smith JEH, Traboulsi EI. Malformations of the anterior segment of the eye. In: Traboulsi EI, editor. Genetic diseases of the eye. 2nd ed. New york: Oxford University Press; 2012.

    Google Scholar 

  15. • Ito YA, Walter MA. Genomics and anterior segment dysgenesis: a review. Clin Experimental Ophthalmol. 2014;42(1):13–24. Gives summary of syndromic and non-syndromic anterior segment malformations and genotype/phenotype detail that is beyond the scope of this review.

  16. Wilms tumor, Aniridia, Genitourinary Anomalies, Mental retardation Syndrome (WAGR). Online Mendelian inheritance of man. http://omim.org/search?index=entry&sort=score+desc%2C+prefix_sort+desc&start=1&limit=10&search=WAGR Accessed 7 Feb 2016.

  17. Chavarria-Soley G, Sticht H, Aklillu E, et al. Mutations in CYP1B1 cause primary congenital glaucoma by reduction of either activity or abundance of the enzyme. Hum Mutat. 2008;29(9):1147–53.

    Article  CAS  PubMed  Google Scholar 

  18. Ali M, McKibbin M, Booth A, et al. Null mutation in LTBP2 cause primary congenital glaucoma. Am J Hum Genet. 2009;84(5):664–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Narooie-Nejad M, Paylakhi SH, Shojaee S, et al. Loss of function mutations in the gene encoding latent transforming growth factor beta binding protein 2, LTBP2, cause primary congenital glaucoma. Hum Mol Genet. 2009;18(20):3969–77.

    Article  CAS  PubMed  Google Scholar 

  20. Sarfarazi M, Akarsu AN, Hossain A, et al. Assignment of a locus (GLC3A) for primary congenital glaucoma (Buphthalmos) to 2p21 and evidence for genetic heterogeneity. Genomics. 1995;30(2):171–7.

    Article  CAS  PubMed  Google Scholar 

  21. Akarsu AN, Turacil ME, Aktan SG, et al. A second locus (GLC3B) for primary congenital glaucoma (Buphthalmos) maps to the 1p36 region. Hum Mol Genet. 1996;5(8):1199–203.

    Article  CAS  PubMed  Google Scholar 

  22. Firasat S, Riazuddin SA, Hejtmancik JF, Riazuddin S. Primary congenital glaucoma localizes to chromosome 14q24.2–24.3 in two consanguineous Pakistani families. Mol Vis. 2008;14:1659–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Khan AO. Genetics of primary glaucoma. Curr Opin Ophthalmol. 2011;22(5):347–55.

    Article  PubMed  Google Scholar 

  24. Tuck MW, Crick RP. The age distribution of primary open angle glaucoma. Ophthalmic Epidemiol. 1998;5(4):173–83.

    Article  CAS  PubMed  Google Scholar 

  25. • Abu-Amero K, Kondkar AA, Chalam KV. An updated review on the genetics of primary open angle glaucoma. Int J Mol Sci. 2015;16(12):28886–991. Provides more detailed information on the current knowledge of the heritability of adult onset POAG.

  26. Wang X, Harmon J, Zabrieskie N, et al. Using the Utah Population Database to assess familial risk of primary open angle glaucoma. Vis Res. 2010;50(23):2391–5.

    Article  PubMed  Google Scholar 

  27. Traboulsi E, Shamekh SA, Couser NL. The eye. In: Stevenson RE, Hall JG, Everman DB, Solomon BD, editors. Human malformations and related anomalies. 3rd ed. New York: Oxford University Press; 2015.

    Google Scholar 

  28. Chan WH, Biswas S, Ashworth JL, Lloyd IC. Congenital and infantile cataract: aetiology and management. Eur J Pediatr. 2012;171(4):625–30.

    Article  PubMed  Google Scholar 

  29. Jagadeesan M, Heon E. Genetics of congenital cataracts. In: Traboulsi EI, editor. Genetic diseases of the eye. 2nd ed. New York: Oxford University Press; 2012.

    Google Scholar 

  30. Congenital Cataracts. Gene Test Registry. 2016. http://www.ncbi.nlm.nih.gov/gtr/all/?term=congenital+cataracts. Accessed 7 Feb 2016.

  31. Cohn AC, Toomes C, Hewitt AW, et al. The natural history of OPA1-related autosomal dominant optic atrophy. Br J Ophthalmol. 2008;92(10):1333–6.

    Article  CAS  PubMed  Google Scholar 

  32. • Skidd PM, Lessell S, Cestari DM. Autosomal dominant hereditary optic neuropathy (ADOA): a review of the genetics and clinical manifestations of ADOA and ADOA+. Semin Ophthalmol. 2013;28(5–6):422–6. Provides a nice overview of autosomal dominant optic atrophy, the extraocular manifestations and the recommended evaluations for patients suspected have this condition.

  33. Yu-Wai-Man P, Shankar SP, Biousse V, et al. Genetic screening for OPA1 and OPA3 mutations in patients with suspected inherited optic neuropathies. Ophthalmology. 2011;118(3):558–63.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Metodiev MD, Gerber S, Hubert L, et al. Mutations in the tricarboxylic acid cycle enzyme, aconitase 2, cause either isolated or syndromic optic neuropathy with encephalopathy and cerebellar atrophy. J Med Genet. 2014;51(12):834–8.

    Article  CAS  PubMed  Google Scholar 

  35. Fraser JA, Biousse V, Newman NJ. The neuro-ophthalmology of mitochondrial disease. Surv Ophthalmol. 2010;55(4):299–334.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Harding AE, Sweeney MG, Govan GG, Riordan-Eva P. Pedigree analysis in Leber hereditary optic neuropathy families with a pathogenic mtDNA mutation. Am J Hum Genet. 1995;57(1):77–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Mackey DA, Oostra RJ, Rosenberg T, et al. Primary pathogenic mtDNA mutations in multigeneration pedigrees with Leber hereditary optic neuropathy. Am J Hum Genet. 1996;59(2):481–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Leber Hereditary Optic Neuropathy. GeneReviews. 2013. http://www.ncbi.nlm.nih.gov/books/NBK1174/. Accessed 7 Feb 2016.

  39. Kirkman MA, Yu-Wai-Man P, Korsten A, et al. Gene–environment interactions in Leber hereditary optic neuropathy. Brain. 2009;132(Pt 9):2317–26.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Nikoskelainen EK, Marttila RJ, Huoponen K, et al. Leber’s “plus”: neurological abnormalities in patients with Leber’s hereditary optic neuropathy. J Neurosurg Psychiatry. 1995;59(2):160–4.

    Article  CAS  Google Scholar 

  41. Lohmann DR, et al. The spectrum of RB1 germ-line mutations in hereditary retinoblastoma. Am J Hum Genet. 1996;58(5):940–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sippel KC, Fraioli RE, Smith GD, et al. Frequency of somatic and germ-line mosaicism in retinoblastoma: implications for genetic counseling. Am J Hum Genet. 1998;62(3):610–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. • Dommering CJ, Mol BM, Moll AC, et al. RB1 mutation spectrum in a comprehensive nationwide cohort of retinoblastoma patients. J Med Genet. 2014;51(6):366–74. Provides a recent look at the mutation spectrum and testing detection rate of the RB1 gene.

  44. Chen Z, Moran K, Richards-Yutz J, et al. Enhanced sensitivity for detection of low-level germline mosaic RB1 mutations in sporadic retinoblastoma cases using deep semiconductor sequencing. Hum Mutat. 2014;35(3):384–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Albrecht P, Ansperger-Rescher B, Schuler A, et al. Spectrum of gross deletions and insertions in the RB1 gene in patients with retinoblastoma and association with phenotypic expression. Hum Mutat. 2005;26(5):437–45.

    Article  CAS  PubMed  Google Scholar 

  46. Castera L, Dehainault C, Michauz D, et al. Fine mapping of whole RB1 gene deletions in retinoblastoma patients confirms PCDH8 as a candidate gene for psychomotor delay. Eur J Hum Genet. 2013;21(4):460–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fletcher O, Easton D, Anderson K, et al. Lifetime risks of common cancers among retinoblastoma survivors. J Natl Cancer Inst. 2004;96(5):357–63.

    Article  PubMed  Google Scholar 

  48. Kleinerman RA, Yu CL, Little MP, et al. Variation of second cancer risk by family history of retinoblastoma among long-term survivors. J Clin Oncol. 2012;30(9):950–7.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Purves D, Augustine GJ, Fitzpatrick D, et al., editors. Neuroscience. 2nd ed. Sunderland: Sinauer Associates; 2001.

    Google Scholar 

  50. Daiger SP, Bowne SJ, Sullivan LS. Perspective on genes and mutations causing retinitis pigmentosa. Arch Ophthalmol. 2007;125(2):151–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. • Ku CA Pennesi ME. Retinal gene therapy: current progress and future prospects. Expert Rev Ophthalmol. 2015;10(3):281–99. Provides nice overview of the history, challenges and successes of gene therapy for retinal disorders.

  52. Klevering BJ, Deutman AF, Maugeri A, Cremers FP, Hoyng CB. The spectrum of retinal phenotypes caused by mutations in the ABCA4 gene. Graefes Arch Clin Exp Ophthalmol. 2005;243(2):90–100.

    Article  CAS  PubMed  Google Scholar 

  53. Chizzolini M, Galan A, Milan E, et al. Good epidemiologic practice in retinitis pigmentosa: from phenotyping to biobanking. Curr Genomics. 2011;12(4):260–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Audo I, Bujakowska KM, Leveillard T, et al. Development and application of a next-generation-sequencing (NGS) approach to detect known and novel gene defects underlying retinal diseases. Orphanet J Rare Dis. 2012;7:8. doi:10.1186/1750-1172-7-8.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Glöckle N, Kohl S, Mohr J, et al. Panel-based next generation sequencing as a reliable and efficient technique to detect mutations in unselected patients with retinal dystrophies. Eur J Hum Genet. 2014;22(1):99–104.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lee K, Berg JS, Milko L, et al. High diagnostic yield of whole exome sequencing in participants with retinal dystrophies in a clinical ophthalmology setting. Am J Ophthalmol. 2015;160(2):354–63.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from an Unrestricted Grant from Research to Prevent Blindness (RPB), New York, NY to the University of North Carolina Department of Ophthalmology and the Bryson Program for Human Genetics at the University of North Carolina at Chapel Hill for their continued support. We would also like to thank A. Katherine Foreman, MS, CGC for her helpful review and comments on this manuscript.

Funding

Natario L. Couser is a Principal Investigator at the University of North Carolina site for Retrophin, Inc., Protocol Number 018CTXX15001; an Observational, Multicenter Study of the Prevalence of Cerebrotendinous Xanthomatosis (CTX) in Patient Populations Diagnosed with Early-Onset Idiopathic Bilateral Cataracts. He is also a Co-Investigator at the University of North Carolina site for the Pediatric Eye Disease Investigator Group (PEDIG); funded by the National Eye Institute (NEI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristy Lee.

Ethics declarations

Disclosure

Kristy Lee declares that she has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical collection on Genetic Counseling and Clinical Testing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, K., Couser, N.L. Genetic Testing for Eye Diseases: A Comprehensive Guide and Review of Ocular Genetic Manifestations from Anterior Segment Malformation to Retinal Dystrophy. Curr Genet Med Rep 4, 41–48 (2016). https://doi.org/10.1007/s40142-016-0087-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40142-016-0087-0

Keywords

Navigation