Current Genetic Medicine Reports

, Volume 3, Issue 1, pp 26–34 | Cite as

Recent Discoveries in the Reproductive Control of Aging

  • Scott Alexander Keith
  • Arjumand GhaziEmail author
Reproductive and Developmental Genetics (Z Urban and B Pober, Section Editors)
Part of the following topical collections:
  1. Reproductive and Developmental Genetics


Reproduction is an energetically expensive endeavor that has profound influences on many life history traits, including the length of life. Reduced reproduction is associated with increased longevity in many organisms. Similarly, mating has been reported to shorten the lifespan of females in multiple species. Contemporary studies in model organisms have begun to unravel the molecular complexities that govern the relationship between reproduction and longevity. Here, we discuss recent discoveries that examine the genetic mechanisms by which two contrasting reproductive events—germline loss and successful mating—impact the lifespan of Caenorhabditis elegans. We first describe genes necessary for the longevity associated with germline removal in C. elegans, with particular emphasis on microRNAs (miRNAs) that play essential roles in this paradigm. Next, we discuss current efforts toward molecular characterization of procreative interactions between different sexes that affect lifespan. Together, these studies illustrate how the same genetic pathways may be utilized by different sexes to exert behavioral and physiological changes in response to various reproductive events.


Reproduction Aging C. elegans microRNAs Mating Lifespan 



SA Keith and A Ghazi both declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. 1.
    Archie EA, Altmann J, Alberts SC. Costs of reproduction in a long-lived female primate: injury risk and wound healing. Behav Ecol Sociobiol. 2014;68(7):1183–93.PubMedCrossRefGoogle Scholar
  2. 2.
    Drewry MD, Williams JM, Hatle JD. Life-extending dietary restriction and ovariectomy result in similar feeding rates but different physiologic responses in grasshoppers. Exp Gerontol. 2011;46(10):781–6.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Drori D, Folman Y. Environmental effects on longevity in the male rat: exercise, mating, castration and restricted feeding. Exp Gerontol. 1976;11:25–32.PubMedCrossRefGoogle Scholar
  4. 4.
    Flatt T, Kyung-Jin M, D’Alterio C, Villa-Cuesta E, Cumbers J, Lehmann R, Jones DL, Tatar M. Drosophila germ-line modulation of insulin signaling and lifespan. Proc Natl Acad Sci USA. 2008;105(17):6368–73.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Hoffman JM, Creevy KE, Promislow DEL. Reproductive capability is associated with lifespan and cause of death in companion dogs. PLoS One. 2013. doi: 10.1371/journal.pone.0061082.Google Scholar
  6. 6.
    Hsin H, Kenyon C. Signals from the reproductive system regulate the lifespan of C. elegans. Nature. 1999;399(6734):362–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Min KJ, Lee CK, Park HN. The lifespan of Korean eunuchs. Curr Biol. 2012;22(18):R792–3.PubMedCrossRefGoogle Scholar
  8. 8.
    Sinha A, Rae R. A functional genomic screen for evolutionarily conserved genes required for lifespan and immunity in germline-deficient C. elegans. PLoS One. 2014;9(8):e101970. doi: 10.1371/journal.pone.0101970.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Tabatabaie V, Atzmon G, Rajpathak SN, Freeman R, Barzilai N, Crandall J. Exceptional longevity is associated with decreased reproduction. Aging (Albany NY). 2011;3(12):1202–5.PubMedCentralPubMedGoogle Scholar
  10. 10.
    Kirkwood TB. Evolution of ageing. Nature. 1977;270(5635):301–4.PubMedCrossRefGoogle Scholar
  11. 11.
    Le Cunff Y, Baudisch A, Pakdaman K. Evolution of aging: individual life history trade-offs and population heterogeneity account for mortality patterns across species. J Evol Biol. 2014;27(8):1706–20.PubMedCrossRefGoogle Scholar
  12. 12.
    Abramson BL, Melvin RG. Cardiovascular risk in women: focus on hypertension. Can J Cardiol. 2014;30(5):553–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Colaianni G, Brunetti G, Faienza MF, Colucci S, Grano M. Osteoporosis and obesity: role of Wnt pathway in human and murine models. World J Orthop. 2014;5(3):242–6.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Mason JB, Cargill SL, Griffey SM, Reader JR, Anderson GB, Carey JR. Transplantation of young ovaries restored cardioprotective influence in postreproductive-aged mice. Aging Cell. 2011;10(3):448–56.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Shuster LT, Rhodes DJ, Gostout BS, Grossardt BR, Rocca WA. Premature menopause or early menopause: long-term health consequences. Maturitas. 2010;65(2):161–6.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Antebi A. Regulation of longevity by the reproductive system. Exp Gerontol. 2013;48(7):596–602.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    •• Ghazi A. Transcriptional networks that mediate signals from reproductive tissues to influence lifespan. Genesis. 2013; 51(1):1–15. This is an exhaustive review of current knowledge on the key transcription factors and their associated mechanistic pathways necessary for the long life of GSC-less C. elegans mutants. Google Scholar
  18. 18.
    Hansen M, Flatt T, Aguilaniu H. Reproduction, fat metabolism, and life span: what is the connection? Cell Metab. 2013;17(1):10–9.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Kashyap L, Perera S, Fisher AL. Identification of novel genes involved in sarcopenia through RNAi screening in Caenorhabditis elegans. J Gerontol A. 2012;67(1):56–65.CrossRefGoogle Scholar
  20. 20.
    Lai CH, Chou CY, Ch’ang LY, Liu CS, Lin W. Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics. Genome Res. 2000;10(5):703–13.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Reiter LT, Bier E. Using Drosophila melanogaster to uncover human disease gene function and potential drug target proteins. Expert Opin Ther Targets. 2002;6(3):387–99.PubMedCrossRefGoogle Scholar
  22. 22.
    Arantes-Oliveira N, Apfeld J, Dillin A, Kenyon C. Regulation of life-span by germ-line stem cells in Caenorhabditis elegans. Science. 2002;295(5554):502–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Libina N, Berman JR, Kenyon C. Tissue-specific activities of C. elegans DAF-16 in the regulation of lifespan. Cell. 2003;115(4):498–502.CrossRefGoogle Scholar
  24. 24.
    Lin K, Hsin H, Libina N, Kenyon C. Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nat Genet. 2001;28(2):139–45.PubMedCrossRefGoogle Scholar
  25. 25.
    Antebi A, Yeh WH, Tait D, Hedgecock EM, Riddle DL. daf-12 encodes a nuclear receptor that regulates the dauer diapause and developmental age in C. elegans. Genes Dev. 2000;14(12):1512–27.PubMedCentralPubMedGoogle Scholar
  26. 26.
    Berman JR, Kenyon C. Germ-cell loss extends C. elegans life span through regulation of DAF-16 by kri-1 and lipophilic-hormone signaling. Cell. 2006;124(5):1055–68.PubMedCrossRefGoogle Scholar
  27. 27.
    Motola DL, Cummins CL, Rottiers V, Sharma KK, Li T, Li Y, Suino-Powell K, Xu HE, Auchus RJ, Antebi A, Mangelsdorf DJ. Identification of ligands for DAF-12 that govern dauer formation and reproduction in C. elegans. Cell. 2006;124(6):1209–23.PubMedCrossRefGoogle Scholar
  28. 28.
    Thondamal M, Witting M, Schmitt-Kopplin P, Aguilaniu H. Steroid hormone signaling links reproduction to lifespan in dietary-restricted Caenorhabditis elegans. Nat Commun. 2014;5:4879.PubMedCrossRefGoogle Scholar
  29. 29.
    Jia K, Albert PS, Riddle DL. DAF-9, a cytochrome P450 regulating C. elegans larval development and adult longevity. Development. 2002;129(1):221–31.PubMedGoogle Scholar
  30. 30.
    Ghazi A, Henis-Korenblit S, Kenyon C. A transcription elongation factor that links signals from the reproductive system to lifespan extension in Caenorhabditis elegans. PLoS Genet. 2009;5(9):e1000639. doi: 10.1371/journal.pgen.1000639.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Goudeau J, Bellemin S, Toselli-Mollereau E, Shamalnasab M, Chen Y, Aguilaniu H. Fatty acid desaturation links germ cell loss to longevity through NHR-80/NHF4 in C. elegans. PLoS Biol. 2011;9(3):e1000599. doi: 10.1371/journal.pbio.1000599.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Lapierre LR, Gelino S, Meléndez A, Hansen M. Autophagy and lipid metabolism coordinately modulate life span in germline-less C. elegans. Curr Biol. 2011;21(18):1507–14.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Lapierre LR, De Magalhaes Filho CD, McQuary PR, Chu CC, Visvikis O, Chang JT, Gelino S, Ong B, Davis AE, Irazoqui JE, Dillin A, Hansen M. The TFEB orthologue HLH-30 regulates autophagy and modulates longevity in Caenorhabditis elegans. Nat Commun. 2013;4:2267.PubMedGoogle Scholar
  34. 34.
    Hsu AL, Murphy CT, Kenyon C. Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science. 2003;300(5622):1142–5.PubMedCrossRefGoogle Scholar
  35. 35.
    Vilchez D, Morantte I, Liu Z, Douglas PM, Merkwirth C, Rodrigues AP, Manning G, Dillin A. RPN-6 determines C. elegans longevity under proteotoxic stress conditions. Nature. 2012;489(7415):263–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Wolff S, Ma H, Burch D, Maciel GA, Hunter T, Dillin A. SMK-1, an essential regulator of DAF-16-mediated longevity. Cell. 2006;124(5):1039–53.PubMedCrossRefGoogle Scholar
  37. 37.
    McCormick M, Chen K, Ramaswamy P, Kenyon C. New genes that extend Caenorhabditis elegans’ lifespan in response to reproductive signals. Aging Cell. 2012;11(2):192–202.PubMedCrossRefGoogle Scholar
  38. 38.
    Rae R, Sinha A, Sommer RJ. Genome-wide analysis of germline signaling genes regulating longevity and innate immunity in the nematode Pristionchus pacificus. PLoS Pathog. 2012;8(8):e1002864. doi: 10.1371/journal.ppat.1002864.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Brock TJ, Browse J, Watts JL. Genetic regulation of unsaturated fatty acid composition in C. elegans. PLoS Genet. 2006;2(7):e108.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Rottiers V, Motola DL, Gerisch B, Cummins CL, Nishiwaki K, Mangelsdorf DJ, Antebi A. Hormonal control of C. elegans dauer formation and life span by a Rieske-like oxygenase. Dev Cell. 2006;10(4):473–82.PubMedCrossRefGoogle Scholar
  41. 41.
    Gerisch B, Rottiers V, Li D, Motola DL, Cummins CL, Lehrach H, Mangelsdorf DJ, Antebi A. A bile acid-like steroid modulates Caenorhabditis elegans lifespan through nuclear receptor signaling. Proc Natl Acad Sci USA. 2007;104(12):5014–9.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Wilczynska A, Bushell M. The complexity of miRNA-mediated repression. Cell Death Differ. 2014. doi: 10.1038/cdd.2014.112.PubMedGoogle Scholar
  43. 43.
    Smith-Vikos T, Slack FJ. MicroRNAs and their roles in aging. J Cell Sci. 2012;125(1):7–17.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.PubMedCrossRefGoogle Scholar
  45. 45.
    Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993;75(5):855–62.PubMedCrossRefGoogle Scholar
  46. 46.
    Boehm M, Slack F. A developmental timing MicroRNA and its target regulate life span in C. elegans. Science. 2005;310(5756):1954–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Lucanic M, Graham J, Scott G, Bhaumik D, Benz CC, Hubbard A, Lithgow GJ, Melov S. Age-related micro-RNA abundance in individual C. elegans. Aging (Albany NY). 2013;5(6):394–411.Google Scholar
  48. 48.
    •• Boulias K, Horvitz HR. The C. elegans microRNA mir-71 acts in neurons to promote germline-mediated longevity through regulation of DAF-16/FOXO. Cell Metab. 2012;15(4):439–450. This study offers the first evidence for activity of a single miRNA being required for lifespan extension in GSC mutants. The dialogue between three distinct tissue types in C. elegans that collectively impact lifespan is demonstrated. Google Scholar
  49. 49.
    •• Shen Y, Wollam J, Magner D, Karalay O, Antebi A. A steroid receptor-microRNA switch regulates life span in response to signals from the gonad. Science. 2012;338(6113):1472–1476. A connection between major life history events, namely developmental decisions and gonad-influenced longevity, are shown to be determined by the activity of particular miRNAs. The cognate targets of these miRNAs are identified as well. Google Scholar
  50. 50.
    Smith-Vikos T, de Lencastre A, Inukai S, Schlomchik M, Holtrup B, Slack FJ. MicroRNAs mediate dietary-restriction-induced longevity through PHA-4/FOXA and SKN-1/Nrf transcription factors. Curr Biol. 2014. doi: 10.1016/j.cub.2014.08.013.PubMedGoogle Scholar
  51. 51.
    Hammell CM, Karp X, Ambros V. A feedback circuit involving let-7-family miRNAs and DAF-12 integrates environmental signals and developmental timing in Caenorhabditis elegans. Proc Natl Acad Sci USA. 2009;106(44):18668–73.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Gems D, Riddle DL. Longevity in Caenorhabditis elegans reduced by mating but not gamete production. Nature. 1996;379(6567):723–5.PubMedCrossRefGoogle Scholar
  53. 53.
    Gems D, Riddle DL. Genetic, behavioral and environmental determinants of male longevity in Caenorhabditis elegans. Genetics. 2000;154(4):1597–610.PubMedCentralPubMedGoogle Scholar
  54. 54.
    •• Maures TJ, Booth LN, Benayoun BA, Izrayelit Y, Schroeder FC, Brunet A. Males shorten the life span of C. elegans hermaphrodites via secreted compounds. Science. 2014;343(6170):541–544. This study shows that direct physical interaction (copulation) between male and hermaphrodite C. elegans is not required for the detrimental healthspan and longevity phenotypes associated with mixed sex populations. The suggestion of secreted compounds impacting longevity is elegantly demonstrated by use of mutant animals separately deficient for secreted compound biosynthesis and chemosensation. Google Scholar
  55. 55.
    •• Shi C, Murphy CT. Mating induces shrinking and death in Caenorhabditis mothers. Science. 2014;343(6170):536–540. This study is the first to quantify and characterize in detail the deleterious morphological phenotypes associated with mating events in C. elegans and to demonstrate evolutionary conservation of this effect in other Caenorhabditis species. Genes involved in these physiological changes are identified. Google Scholar
  56. 56.
    Woodruff GC, Knauss CM, Maugel TK, Haag ES. Mating damages the cuticle of C. elegans hermaphrodites. PLoS One. 2014;9(8):e104456. doi: 10.1371/journal.pone.0104456.PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Hughes SE, Evason K, Xiong C, Kornfeld K. Genetic and pharmacological factors that influence reproductive aging in nematodes. PLoS Genet. 2007. doi: 10.1371/journal.pgen.0030025.Google Scholar
  58. 58.
    Pickett CL, Kornfeld K. Age-related degeneration of the egg-laying system promotes matricidal hatching in Caenorhabditis elegans. Aging Cell. 2013;12(4):544–53.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Parsch J, Ellegren H. The evolutionary causes and consequences of sex-biased gene expression. Nat Rev Genet. 2013;14(2):83–7.PubMedCrossRefGoogle Scholar
  60. 60.
    Chapman T, Liddle LF, Kalb JM, Wolfner MF, Partridge L. Cost of mating in Drosophila melanogaster females is mediated by male accessory gland products. Nature. 1995;373(6511):241–4.PubMedCrossRefGoogle Scholar
  61. 61.
    Zajitschek F, Zajistchek SR, Friberg U, Maklakov AA. Interactive effects of sex, social environment, dietary restriction, and methionine on survival and reproduction in fruit flies. Age (Dordr). 2013;35(4):1193–204.CrossRefGoogle Scholar
  62. 62.
    Dowling DK, Williams BR, Garcia-Gonzalez F. Maternal sexual interactions affect offspring survival and ageing. J Evol Biol. 2013. doi: 10.1111/jeb.12276.PubMedGoogle Scholar
  63. 63.
    Gerrard DT, Fricke C, Edward DA, Edwards DR, Chapman T. Genome-wide responses of female fruit flies subjected to divergent mating regimes. PLoS One. 2013;8(6):e68136.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Wilder SM, Le Couteur DG, Simpson SJ. Diet mediates the relationship between longevity and reproduction in mammals. Age (Dordr). 2013;35(3):921–7.CrossRefGoogle Scholar
  65. 65.
    Tarín JJ, Gómez-Piquer V, García-Palomares S, García-Pérez MA, Cano A. Absence of long-term effects of reproduction on longevity in the mouse model. Reprod Biol Endocrinol. 2014;12(1):84.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media New York 2014

Authors and Affiliations

  1. 1.Department of PediatricsUniversity of Pittsburgh School of MedicinePittsburghUSA

Personalised recommendations