Skip to main content

Advertisement

Log in

Groin Pain in Athletes

  • Sports Medicine Rehabilitation (J Soo Hoo and B Liem, Section Editors)
  • Published:
Current Physical Medicine and Rehabilitation Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The aim of this review is to present the latest research regarding the classification and evaluation of groin pain in athletes.

Recent Findings

Use of standardized terminology of groin pain has increased. Risk factors for groin pain include prior groin injury, higher level of play, reduced adductor strength, and lower levels of sports-specific training. Adductor-related maneuvers on examination can accurately predict imaging findings. Recent studies evaluating imaging demonstrate that 3-T magnetic resonance imaging may have superior diagnostic capabilities compared to 1.5-T magnetic resonance arthrography.

Summary

The evaluation of groin pain in athletes can be challenging given the complexity of its anatomy and biomechanics. Recent updates in standardizing terminology, physical examination maneuvers, and imaging can help providers better assess athletes with groin pain. When the pain generator is unclear, image-guided diagnostic injections may be utilized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Werner Jonas, et al. “Hip and groin time-loss injuries decreased slightly but injury burden remained constant in men’s professional football: the 15-year prospective UEFA Elite Club Injury Study. Br J Sports Med. 2019;53(9):539–46. https://doi.org/10.1136/bjsports-2017-097796.

    Article  PubMed  Google Scholar 

  2. Thorborg K, et al. Prevalence and severity of hip and groin pain in sub-elite male football: a cross-sectional cohort study of 695 players. Scand J Med Sci Sports. 2017;27(1):107–14. https://doi.org/10.1111/sms.12623.

    Article  CAS  PubMed  Google Scholar 

  3. Waldén M, Hägglund M. Ekstrand JThe epidemiology of groin injury in senior football: a systematic review of prospective studies. Br J Sports Med. 2015;49:792–7.

    Article  Google Scholar 

  4. Kerbel Yehuda E, et al. Epidemiology of hip and groin injuries in collegiate athletes in the United States. Orthop J Sports Med. 2018;6(5):2325967118771676.2.

    Article  Google Scholar 

  5. Orchard JW. Men at higher risk of groin injuries in elite team sports: a systematic review. Br J Sports Med. 2015;49(12):798–802. https://doi.org/10.1136/bjsports-2014-094272.

    Article  PubMed  Google Scholar 

  6. Arner JW. et al. Evaluation and treatment of groin pain syndromes in athletes. 2020.

  7. Sheen AJ, Stephenson BM, Lloyd DM, et al. ‘Treatment of the Sportsman’s groin’: British Hernia Society’s 2014 position statement based on the Manchester Consensus Conference. Br J Sports Med. 2014;48:1079–87.

    Article  Google Scholar 

  8. Bisciotti GN, Volpi P, Zini R, et al. Groin Pain Syndrome Italian Consensus Conference on terminology, clinical evaluation and imaging assessment in groin pain in athlete. BMJ Open Sport Exerc Med. 2016;2:e000142. https://doi.org/10.1136/bmjsem-2016-000142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Weir Adam, et al. Doha agreement meeting on terminology and definitions in groin pain in athletes. Br J Sports Med. 2015;49(12):768–74. https://doi.org/10.1136/bjsports-2015-094869.

    Article  PubMed  Google Scholar 

  10. Dhinakar Kingsley SR, Lacaste AnjanetteCantoria. Long-standing groin pain in an elite athlete: usefulness of ultrasound in differential diagnosis and patient education–a case report. Eur J Physiother. 2018;20(4):189–97.

    Article  Google Scholar 

  11. • Heijboer Willem M P, et al. A Delphi survey and international e-survey evaluating the Doha agreement meeting classification system in groin pain: Where are we 5 years later? J Sci Med Sport. 2022;25(1):3–8. https://doi.org/10.1016/j.jsams.2021.06.014. Five years after publication, a majority of the Doha agreement expert group and independent international clinicians report adopting their classification system. Despite heterogeneity this study highlights the importance of using appropriate terminology when evaluating an athlete with groin pain.

    Article  PubMed  Google Scholar 

  12. Serner Andreas, et al. Diagnosis of acute groin injuries: a prospective study of 110 athletes. Am J Sports Med. 2015;43(8):1857–64. https://doi.org/10.1177/0363546515585123.

    Article  PubMed  Google Scholar 

  13. Dupré T, et al. Muscle activity of cutting manoeuvres and soccer inside passing suggests an increased groin injury risk during these movements. Sci Rep. 2021;11(1):7223–7223. https://doi.org/10.1038/s41598-021-86666-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Griffin DR, Dickenson EJ, O’Donnell J, et al. The Warwick Agreement on femoroacetabular impingement syndrome (FAI syndrome): an international consensus statement. Br J Sports Med. 2016;50:1169–76.

    Article  CAS  Google Scholar 

  15. Clohisy John C, et al. Clinical presentation of patients with symptomatic anterior hip impingement. Clin Orthop Relat Res. 2009;467(3):638–44. https://doi.org/10.1007/s11999-008-0680-y.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dick Alastair G, et al. An approach to hip pain in a young adult. BMJ (Clin Res ed). 2018;361:k1086. https://doi.org/10.1136/bmj.k1086.

    Article  Google Scholar 

  17. Rainville James, et al. Comparison of the history and physical examination for hip osteoarthritis and lumbar spinal stenosis. Spine J : Off J North Am Spine Soc. 2019;19(6):1009–18. https://doi.org/10.1016/j.spinee.2019.01.006.

    Article  Google Scholar 

  18. Hölmich P, et al. Exercise program for prevention of groin pain in football players: a cluster-randomized trial. Scand J Med Sci Sports. 2010;20(6):814–21.

    Article  Google Scholar 

  19. Whittaker Jackie L, et al. Risk factors for groin injury in sport: an updated systematic review. Br J Sports Med. 2015;49(12):803–9. https://doi.org/10.1136/bjsports-2014-094287.

    Article  PubMed  Google Scholar 

  20. Sailly Matthieu, et al. Pubic apophysitis: a previously undescribed clinical entity of groin pain in athletes. Br J Sports Med. 2015;49(12):828–34. https://doi.org/10.1136/bjsports-2014-094436.

    Article  PubMed  Google Scholar 

  21. Bharam S, Feghhi DP, Porter DA, Bhagat PV. Proximal adductor avulsion injuries: outcomes of surgical reattachment in athletes. Orthop J Sports Med. 2018. https://doi.org/10.1177/2325967118784898

  22. Thorborg Kristian, et al. Clinical examination, diagnostic imaging, and testing of athletes with groin pain: an evidence-based approach to effective management. J Orthop Sports Phys Ther. 2018;48(4):239–49. https://doi.org/10.2519/jospt.2018.7850.

    Article  PubMed  Google Scholar 

  23. Kubiak-Langer M, et al. Range of motion in anterior femoroacetabular impingement. Clin Orthop Relat Res (1976-2007). 2007;458:117–24.

    Article  CAS  Google Scholar 

  24. Whyte Enda, et al. Reliability of a smartphone goniometric application in the measurement of hip range of motion among experienced and novice clinicians. J Sport Rehab. 2021;30(6):969–72.

    Article  Google Scholar 

  25. Hölmich P, Hölmich LR, Bjerg AM. Clinical examination of athletes with groin pain: an intraobserver and interobserver reliability study. Br J Sports Med. 2004;38(4):446–51.

    Article  Google Scholar 

  26. Delahunt Eamonn, et al. The thigh adductor squeeze test: 45° of hip flexion as the optimal test position for eliciting adductor muscle activity and maximum pressure values. Manual Ther. 2011;16(5):476–80. https://doi.org/10.1016/j.math.2011.02.014.

    Article  Google Scholar 

  27. Wörner Tobias, et al. Five-second squeeze testing in 333 professional and semiprofessional male ice hockey players: how are hip and groin symptoms, strength, and sporting function related? Orthop J Sports Med. 2019;7(2):2325967119825858. https://doi.org/10.1177/2325967119825858.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Strosberg David S, et al. The role of femoroacetabular impingement in core muscle injury/athletic pubalgia: diagnosis and management. Front Surg. 2016;3:6. https://doi.org/10.3389/fsurg.2016.00006.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Serner Andreas, et al. Can standardised clinical examination of athletes with acute groin injuries predict the presence and location of MRI findings? Br J Sports Med. 2016;50(24):1541–7. https://doi.org/10.1136/bjsports-2016-096290.

    Article  PubMed  Google Scholar 

  30. Burnett R, Stephen J, et al. Clinical presentation of patients with tears of the acetabular labrum. J Bone Joint Surg Am. 2006;88(7):1448–57. https://doi.org/10.2106/JBJS.D.02806.

    Article  PubMed  Google Scholar 

  31. Malloy P, Neumann DA, Kipp K. Hip biomechanics during a single-leg squat: 5 key differences between people with femoroacetabular impingement syndrome and those without hip pain. J Orthop Sports Phys Ther. 2019;49(12):908–16.

    Article  Google Scholar 

  32. Reiman MP, et al. Diagnostic accuracy of clinical tests for the diagnosis of hip femoroacetabular impingement/labral tear: a systematic review with meta-analysis. Br J Sports Med. 2015;49(12):811. https://doi.org/10.1136/bjsports-2014-094302.

    Article  CAS  PubMed  Google Scholar 

  33. Casartelli Nicola C, et al. The FADIR test accuracy for screening cam and pincer morphology in youth ice hockey players. J Sci Med Sport. 2018;21(2):134–8. https://doi.org/10.1016/j.jsams.2017.06.011.

    Article  PubMed  Google Scholar 

  34. Tijssen Marsha, et al. Diagnostics of femoroacetabular impingement and labral pathology of the hip: a systematic review of the accuracy and validity of physical tests. Arthrosc : J Arthrosc Relat Surg : Off Publ Arthrosc Assoc North Am Int Arthrosc Assoc. 2012;28(6):860–71. https://doi.org/10.1016/j.arthro.2011.12.004.

    Article  Google Scholar 

  35. •• Heerey Joshua, et al. The size and prevalence of bony hip morphology do not differ between football players with and without hip and/or groin pain: findings from the FORCe cohort. J Orthop Sports Phys Ther. 2021;51(3):115–25. Findings from this study demonstrate that the size and prevalence of bony hip morphology does not differ between male soccer players with and without hip and/or groin pain. This emphasizes the importance of correlating hip abnormalities on imaging with history and physical exam.

    Article  Google Scholar 

  36. Heerey JJ, et al. Prevalence of early hip OA features on MRI in high-impact athletes. The femoroacetabular impingement and hip osteoarthritis cohort (FORCe) study. Osteoarthr Cartil. 2021;29(3):323–34. https://doi.org/10.1016/j.joca.2020.12.013.

    Article  CAS  Google Scholar 

  37. Koulouris G. Imaging review of groin pain in elite athletes: an anatomic approach to imaging findings. AJR Am J Roentgenol. 2008;191(4):962–72. https://doi.org/10.2214/AJR.07.3410.

    Article  PubMed  Google Scholar 

  38. Domayer SE, et al. Femoroacetabular cam-type impingement: diagnostic sensitivity and specificity of radiographic views compared to radial MRI. Eur J Radiol. 2011;80(3):805–10. https://doi.org/10.1016/j.ejrad.2010.10.016.

    Article  CAS  PubMed  Google Scholar 

  39. Ishøi Lasse, et al. Demographic and radiographic factors associated with intra-articular hip cartilage injury: a cross-sectional study of 1511 hip arthroscopy procedures. Am J Sports Med. 2019;47(11):2617–25. https://doi.org/10.1177/0363546519861088.

    Article  PubMed  Google Scholar 

  40. Weber M-A, et al. Groin pain in athletes. RoFo : Fortschr auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin. 2013;185(12):1139–48. https://doi.org/10.1055/s-0033-1335304.

    Article  Google Scholar 

  41. Connell David A, et al. Longitudinal study comparing sonographic and MRI assessments of acute and healing hamstring injuries. AJR Am J Roentgenol. 2004;183(4):975–84. https://doi.org/10.2214/ajr.183.4.1830975.

    Article  PubMed  Google Scholar 

  42. Sudula SN. Imaging the hip joint in osteoarthritis: a place for ultrasound? Ultrasound (Leeds, England). 2016;24(2):111–8. https://doi.org/10.1177/1742271X16643118.

    Article  CAS  Google Scholar 

  43. Lee Susan C, et al. Imaging of groin pain: magnetic resonance and ultrasound imaging features. Sports Health. 2017;9(5):428–35. https://doi.org/10.1177/1941738117694841.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Morley Nicholas, et al. Sonographic evaluation of athletic pubalgia. Skelet Radiol. 2016;45(5):689–99. https://doi.org/10.1007/s00256-016-2340-8.

    Article  Google Scholar 

  45. Piechota Małgorzata, et al. Internal snapping hip syndrome in dynamic ultrasonography. J Ultrason. 2016;16(66):296–303. https://doi.org/10.15557/JoU.2016.0030.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Jin Wook, et al. Sonographic evaluation of anterosuperior hip labral tears with magnetic resonance arthrographic and surgical correlation. J Ultrasound Med : Off J Am Inst Ultrasound Med. 2012;31(3):439–47.

    Article  Google Scholar 

  47. Khan Wahab, et al. Utility of intra-articular hip injections for femoroacetabular impingement: a systematic review. Orthop J Sports Med. 2015;3(9):2325967115601030. https://doi.org/10.1177/2325967115601030.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Henderson Rogan EA, et al. The accuracy of diagnostic ultrasound imaging for musculoskeletal soft tissue pathology of the extremities: a comprehensive review of the literature. Chiropr Man Ther. 2015;23:31. https://doi.org/10.1186/s12998-015-0076-5.

    Article  Google Scholar 

  49. Troelsen A, et al. Ultrasound versus magnetic resonance arthrography in acetabular labral tear diagnostics: a prospective comparison in 20 dysplastic hips. Acta Radiol (Stockholm, Sweden : 1987). 2007;48(9):1004–10. https://doi.org/10.1080/02841850701545839.

    Article  CAS  Google Scholar 

  50. Orellana Cristóbal, et al. ultrasound findings in patients with femoracetabular impingement without radiographic osteoarthritis a pilot study. J Ultrasound Med : Offic J J Am Inst Ultrasound Med. 2019;38(4):895–901. https://doi.org/10.1002/jum.14768.

    Article  Google Scholar 

  51. Rakhra Kawan S. “Magnetic resonance imaging of acetabular labral tears.” JBJS 93. 2011;Supplement_2:28–34.

    Article  Google Scholar 

  52. Brukner, P., Khan K. Brukner. “Khan’s clinical sports medicine: Volume 1 Injuries. North Ryde.” 2017; 769–804.

  53. •• Zhang Peng, et al. 30 T MRI is more recommended to detect acetabular labral tears than MR Arthrography: an updated meta-analysis of diagnostic accuracy. J Orthop Surg Res. 2022;17(1):1–15. Findings from this study suggest that 3T magnetic resonance imaging may be superior to 1.5T MRA in detecting acetabular labral tears. This could result in non-invasive and quicker methods of detecting acetabular labral tears.

    Article  Google Scholar 

  54. Sutter Reto, et al. Hip MRI: how useful is intraarticular contrast material for evaluating surgically proven lesions of the labrum and articular cartilage? AJR Am J Roentgenol. 2014;202(1):160–9. https://doi.org/10.2214/AJR.12.10266.

    Article  PubMed  Google Scholar 

  55. Sundberg Thorsten P, et al. Evaluation of the acetabular labrum at 3.0-T MR imaging compared with 1.5-T MR arthrography: preliminary experience. Radiology. 2006;238(2):706–11. https://doi.org/10.1148/radiol.2382050165.

    Article  PubMed  Google Scholar 

  56. Perdikakis Evangelos, et al. Comparison of MR-arthrography and MDCT-arthrography for detection of labral and articular cartilage hip pathology. Skelet Radiol. 2011;40(11):1441–7. https://doi.org/10.1007/s00256-011-1111-9.

    Article  Google Scholar 

  57. Chopra A, Robinson P. Imaging athletic groin pain. Radiol Clin. 2016;54(5):865–73.

    Article  Google Scholar 

  58. Branci Sonia, et al. MRI findings in soccer players with long-standing adductor-related groin pain and asymptomatic controls. Br J Sports Med. 2015;49(10):681–91. https://doi.org/10.1136/bjsports-2014-093710.

    Article  PubMed  Google Scholar 

  59. Branci Sonia, et al. The Copenhagen Standardised MRI protocol to assess the pubic symphysis and adductor regions of athletes: outline and intratester and intertester reliability. Br J Sports Med. 2015;49(10):692–9. https://doi.org/10.1136/bjsports-2014-094239.

    Article  PubMed  Google Scholar 

  60. Ayeni Olufemi R, et al. Pre-operative intra-articular hip injection as a predictor of short-term outcome following arthroscopic management of femoroacetabular impingement. Knee Surg, Sports Traumatol, Arthros : Off J ESSKA. 2014;22(4):801–5. https://doi.org/10.1007/s00167-014-2883-y.

    Article  Google Scholar 

  61. Byrne Caoimhe A, et al. Sports-related groin pain secondary to symphysis pubis disorders: correlation between MRI findings and outcome after fluoroscopy-guided injection of steroid and local anesthetic. AJR Am J Roentgenol. 2017;209(2):380–8. https://doi.org/10.2214/AJR.16.17578.

    Article  PubMed  Google Scholar 

  62. Fukushima, Kensuke et al. “Assessment of the duration and effectiveness of intra-articular lidocaine injections for groin pain in patients with labral tears involving early osteoarthritis.” SICOT-J 7 2021; 4 https://doi.org/10.1051/sicotj/2020049

  63. Gao Guanying, et al. Ultrasound and ultrasound-guided hip injection have high accuracy in the diagnosis of femoroacetabular impingement with atypical symptoms. Arthrosc J Arthrosc Relat Surg : Off Publ Arthrosc Assoc North Am Int Arthrosc Assoc. 2021;37(1):128–35. https://doi.org/10.1016/j.arthro.2020.08.013.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This  article  is  part  of  the Topical Collection on Sports Medicine Rehabilitation

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sapp, G., Jow, S. & Murtaugh, B. Groin Pain in Athletes. Curr Phys Med Rehabil Rep 10, 257–264 (2022). https://doi.org/10.1007/s40141-022-00364-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40141-022-00364-5

Keywords

Navigation