Skip to main content

Update on Management of Leg Pain in Athletes

Abstract

Purpose of Review

This review seeks to summarize recent data regarding diagnosis and treatment of leg pain in athletes. Conclusions from these studies can familiarize practitioners with new methodologies in an ever-changing medical field to best treat their patients.

Recent Findings

The mainstay of treatment for several injuries of the leg includes conservative measures like rest, activity modification, physical therapy, and non-steroidal anti-inflammatory medications. While these remain valuable first line treatments, this review delves into recent studies which have shown efficacy of alternative therapies including extracorporeal shockwave therapy (ESWT), non-surgical percutaneous tenotomy, botulinum toxin injection, prolotherapy, and platelet rich plasma (PRP).

Summary

Newer therapeutic interventions as described are promising, with increasing research supporting their use, particularly in chronic or refractory disease states. Many of these interventions may speed up athletes’ recovery and decrease their return-to-play time. While these therapies may prevent the need for surgical intervention, they require further study to better define and homogenize treatment dosages and timelines.

This is a preview of subscription content, access via your institution.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. MeSH Browser. Accessed January 4, 2022. https://meshb.nlm.nih.gov/record/ui?ui=D007866.

  2. Brukner P, Khan K, Clarsen B, et al. Brukner & Khan's Clinical Sports Medicine. Chennai, India: McGraw-Hill Education (India) Private Ltd.; 2018.

  3. Prieto-González P, Martínez-Castillo JL, Fernández-Galván LM, Casado A, Soporki S, Sánchez-Infante J. Epidemiology of sports-related injuries and associated risk factors in adolescent athletes: an injury surveillance. Int J Environ Res Public Health. 2021;18(9):4857. https://doi.org/10.3390/ijerph18094857.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Smith JM, Varacallo M. Osgood Schlatter disease. In: StatPearls. StatPearls Publishing; 2021. Accessed November 28, 2021. http://www.ncbi.nlm.nih.gov/books/NBK441995/.

  5. Ladenhauf HN, Seitlinger G, Green DW. Osgood-Schlatter disease: a 2020 update of a common knee condition in children. Curr Opin Pediatr. 2020;32(1):107–12. https://doi.org/10.1097/MOP.0000000000000842.

    Article  PubMed  Google Scholar 

  6. Nakase J, Oshima T, Takata Y, Shimozaki K, Asai K, Tsuchiya H. No superiority of dextrose injections over placebo injections for Osgood-Schlatter disease: a prospective randomized double-blind study. Arch Orthop Trauma Surg. 2020;140(2):197–202. https://doi.org/10.1007/s00402-019-03297-2.

    Article  PubMed  Google Scholar 

  7. Rabago D, Slattengren A, Zgierska A. Prolotherapy in primary care practice. Prim Care. 2010;37(1):65–80. https://doi.org/10.1016/j.pop.2009.09.013.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wu Z, Tu X, Tu Z. Hyperosmolar dextrose injection for Osgood-Schlatter disease: a double-blind, randomized controlled trial. Arch Orthop Trauma Surg. Published online October 21, 2021. https://doi.org/10.1007/s00402-021-04223-1. RCT to support use of prolotherapy to treat refractory Osgood-Schlatter disease.

  9. Circi E, Beyzadeoglu T. Results of arthroscopic treatment in unresolved Osgood-Schlatter disease in athletes. Int Orthop. 2017;41(2):351–6. https://doi.org/10.1007/s00264-016-3374-1.

    Article  PubMed  Google Scholar 

  10. McClure CJ, Oh R. Medial tibial stress syndrome. In: StatPearls. StatPearls Publishing; 2021. Accessed November 29, 2021. http://www.ncbi.nlm.nih.gov/books/NBK538479/.

  11. Zhang H, Peng W, Qin C, et al. Lower leg muscle stiffness on two-dimensional shear wave elastography in subjects with medial tibial stress syndrome. J Ultrasound Med Off J Am Inst Ultrasound Med. Published online October 7, 2021. https://doi.org/10.1002/jum.15842.

  12. Kiel J, Kaiser K. Stress reaction and fractures. In: StatPearls. StatPearls Publishing; 2021. Accessed November 29, 2021. http://www.ncbi.nlm.nih.gov/books/NBK507835/

  13. Winters M. The diagnosis and management of medial tibial stress syndrome. Unfallchirurg. 2020;123(1):15–9. https://doi.org/10.1007/s00113-019-0667-z.

    Article  PubMed  Google Scholar 

  14. Naderi A, Bagheri S, Ramazanian Ahoor F, Moen MH, Degens H. Foot orthoses enhance the effectiveness of exercise, shockwave, and ice therapy in the management of medial tibial stress syndrome. Clin J Sport Med Off J Can Acad Sport Med. Published online March 24, 2021. https://doi.org/10.1097/JSM.0000000000000926.

  15. Bonanno DR, Murley GS, Munteanu SE, Landorf KB, Menz HB. Effectiveness of foot orthoses for the prevention of lower limb overuse injuries in naval recruits: a randomised controlled trial. Br J Sports Med. 2018;52(5):298–302. https://doi.org/10.1136/bjsports-2017-098273.

    Article  PubMed  Google Scholar 

  16. Padhiar N, Curtin M, Aweid O, et al. The effectiveness of prolotherapy for recalcitrant medial tibial stress syndrome: a prospective consecutive case series. J Foot Ankle Res. 2021;14(1):32. https://doi.org/10.1186/s13047-021-00453-z. Support for use of prolotherapy to treat pain associated with medial tibial stress syndrome.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Korakakis V, Whiteley R, Tzavara A, Malliaropoulos N. The effectiveness of extracorporeal shockwave therapy in common lower limb conditions: a systematic review including quantification of patient-rated pain reduction. Br J Sports Med. 2018;52(6):387–407. https://doi.org/10.1136/bjsports-2016-097347.

    Article  PubMed  Google Scholar 

  18. Lohrer H, Malliaropoulos N, Korakakis V, Padhiar N. Exercise-induced leg pain in athletes: diagnostic, assessment, and management strategies. Phys Sportsmed. 2019;47(1):47–59. https://doi.org/10.1080/00913847.2018.1537861.

    Article  PubMed  Google Scholar 

  19. Hoenig T, Tenforde AS, Strahl A, Rolvien T, Hollander K. Does magnetic resonance imaging grading correlate with return to sports after bone stress injuries? A systematic review and meta-analysis. Am J Sports Med. 2022;50(3):834–44. https://doi.org/10.1177/0363546521993807.

    Article  PubMed  Google Scholar 

  20. Imam MA, Holton J, Ernstbrunner L, et al. A systematic review of the clinical applications and complications of bone marrow aspirate concentrate in management of bone defects and nonunions. Int Orthop. 2017;41(11):2213–20. https://doi.org/10.1007/s00264-017-3597-9.

    Article  PubMed  Google Scholar 

  21. Miller TL, Kaeding CC, Rodeo SA. Emerging options for biologic enhancement of stress fracture healing in athletes. JAAOS - J Am Acad Orthop Surg. 2020;28(1):1–9. https://doi.org/10.5435/JAAOS-D-19-00112. PRP may be an emerging therapy for treatment of stress fractures in the leg (shown valuable in animals and needs to be replicated in humans).

    Article  PubMed  Google Scholar 

  22. Leal C, D’Agostino C, Gomez Garcia S, Fernandez A. Current concepts of shockwave therapy in stress fractures. Int J Surg. 2015;24:195–200. https://doi.org/10.1016/j.ijsu.2015.07.723. ESWT may be an emerging therapy for treatment of stress fractures in the leg (more studies need to be complete).

    Article  PubMed  Google Scholar 

  23. Grassi A, Napoli F, Romandini I, et al. Is platelet-rich plasma (PRP) effective in the treatment of acute muscle injuries? A systematic review and meta-analysis. Sports Med Auckl NZ. 2018;48(4):971–89. https://doi.org/10.1007/s40279-018-0860-1.

    Article  Google Scholar 

  24. Velasco TO, Leggit JC. Chronic chronic exertional compartment syndrome evaluated with shear wave elastography: a case report. Curr Sports Med Rep. 2020;19(9):347–52. https://doi.org/10.1249/JSR.0000000000000747.

    Article  PubMed  Google Scholar 

  25. Pedowitz RA, Hargens AR, Mubarak SJ, Gershuni DH. Modified criteria for the objective diagnosis of chronic compartment syndrome of the leg. Am J Sports Med. 1990;18(1):35–40. https://doi.org/10.1177/036354659001800106.

    CAS  Article  PubMed  Google Scholar 

  26. Berrigan WA, Wickstrom J, Farrell M, Alter K. Botulinum toxin A for chronic exertional compartment syndrome evaluated with shear wave elastography: a case report. Clin J Sport Med. Published online November 29, 2021. https://doi.org/10.1097/JSM.0000000000000910.

  27. Toyoshima Y, Webb J, Gregory A, Fatemi M, Alizad A, Zhao C. Ultrasound shear wave elastography for measuring intracompartmental pressure of compartment syndrome using a turkey hind limb model. J Biomech. 2020;98: 109427. https://doi.org/10.1016/j.jbiomech.2019.109427.

    Article  PubMed  Google Scholar 

  28. Sadeghi S, Johnson M, Bader DA, Cortes DH. Change in shear modulus of healthy lower leg muscles after treadmill running: toward a noninvasive diagnosis of chronic exertional compartment syndrome. J Eng Sci Med Diagn Ther. 2019;2(3): 031004. https://doi.org/10.1115/1.4043537.

    Article  Google Scholar 

  29. de Bruijn J, Winkes M, van Eerten P, Scheltinga M. Chronic exertional compartment syndrome as a cause of anterolateral leg pain. Unfallchirurg. 2020;123(Suppl 1):8–14. https://doi.org/10.1007/s00113-019-0641-9.

    Article  PubMed  Google Scholar 

  30. Buerba RA, Fretes NF, Devana SK, Beck JJ. Chronic exertional compartment syndrome: current management strategies. Open Access J Sports Med. 2019;10:71–9. https://doi.org/10.2147/OAJSM.S168368.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zimmermann WO, Hutchinson MR, Van den Berg R, Hoencamp R, Backx FJG, Bakker EWP. Conservative treatment of anterior chronic exertional compartment syndrome in the military, with a mid-term follow-up. BMJ Open Sport Exerc Med. 2019;5(1): e000532. https://doi.org/10.1136/bmjsem-2019-000532. Conservative versus surgical approaches may be sufficient for treatment of CECS.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hutto WM, Schroeder PB, Leggit JC. Botulinum toxin as a novel treatment for chronic exertional compartment syndrome in the U.S. military. Mil Med. 2019;184(5–6):e458–61. https://doi.org/10.1093/milmed/usy223.

    Article  PubMed  Google Scholar 

  33. Charvin M, Orta C, Davy L, et al. Botulinum toxin a for chronic exertional compartment syndrome: a retrospective study of 16 upper- and lower-limb cases. Clin J Sport Med Off J Can Acad Sport Med. Published online July 16, 2021. https://doi.org/10.1097/JSM.0000000000000958.

  34. Jensen M, Lystrup RM, Jonas CE. Chronic techniques for neurotoxin outcomes. Mil Med. Published online June 24, 2021:usab253. https://doi.org/10.1093/milmed/usab253.

  35. Moore C, Hulsopple C, Boyce B. Utilization of techniques for neurotoxin outcomes. Curr Sports Med Rep. 2020;19(6):217–22. https://doi.org/10.1249/JSR.0000000000000720. Botulinum toxin injections may be a viable option for treating CECS.

    Article  PubMed  Google Scholar 

  36. Brown L, Taylor D, Weiss E. Predictive techniques for neurotoxin outcomes. Dermatol Surg Off Publ Am Soc Dermatol Surg Al. 2018;44(5):721–5. https://doi.org/10.1097/DSS.0000000000001439.

    CAS  Article  Google Scholar 

  37. Mangan JJ, Rogero RG, Fuchs DJ, Raikin SM. Surgical management of chronic exertional compartment syndrome of the lower extremity: outcome analysis and return to sport. Clin J Sport Med. Published online November 29, 2021. https://doi.org/10.1097/JSM.0000000000000865.

  38. Ding A, Machin M, Onida S, Davies AH. A systematic review of fasciotomy in chronic exertional compartment syndrome. J Vasc Surg. 2020;72(5):1802–12. https://doi.org/10.1016/j.jvs.2020.05.030.

    Article  PubMed  Google Scholar 

  39. Finnoff JT, Johnson W. Ultrasound-guided fasciotomy for chronic exertional compartment syndrome: a case report. Clin J Sport Med. 2020;30(6): e231. https://doi.org/10.1097/JSM.0000000000000777. US-guided in-office fasciotomy may be a more conservative surgical approach to treatment of CECS.

    Article  PubMed  Google Scholar 

  40. Baik JS, Ma HI, Lee PH, Taira T. Focal task-specific lower limb dystonia only when walking stairs: is it a new disease entity? Front Neurol. 2019;10:1081. https://doi.org/10.3389/fneur.2019.01081.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Murgai AA, Jog M. Focal limb dystonia and tremor: clinical update. Toxicon Off J Int Soc Toxinology. 2020;176:10–4. https://doi.org/10.1016/j.toxicon.2020.01.004.

    CAS  Article  Google Scholar 

  42. Cutsforth-Gregory JK, Ahlskog JE, McKeon A, et al. Repetitive exercise dystonia: a difficult to treat hazard of runner and non-runner athletes. Parkinsonism Relat Disord. 2016;27:74–80. https://doi.org/10.1016/j.parkreldis.2016.03.013.

    Article  PubMed  Google Scholar 

  43. Asahi T, Taira T, Ikeda K, Yamamoto J, Sato S. Full recovery from drummer’s dystonia with foot and arm symptoms after stereotactic ventro-oral thalamotomy: a case report. Acta Neurochir (Wien). 2018;160(4):835–8. https://doi.org/10.1007/s00701-018-3480-5.

    Article  PubMed  Google Scholar 

  44. Saminejad B, House P, Ballard DJ, Schrock L. Runner’s dystonia successfully treated with unilateral globus pallidus interna (GPi) deep brain stimulation (DBS) (P1.043). Neurology. 2016;86(16 Supplement). Accessed December 14, 2021. https://n.neurology.org/content/86/16_Supplement/P1.043.

  45. Mohile N, Perez J, Rizzo M, et al. Chronic lower leg pain in athletes: overview of presentation and management. HSS J. 2020;16(1):86–100. https://doi.org/10.1007/s11420-019-09669-z.

    Article  PubMed  Google Scholar 

  46. Maffulli N, Longo UG, Kadakia A, Spiezia F. Achilles tendinopathy. Foot Ankle Surg. 2020;26(3):240–9. https://doi.org/10.1016/j.fas.2019.03.009.

    Article  PubMed  Google Scholar 

  47. Prado-Costa R, Rebelo J, Monteiro-Barroso J, Preto AS. Ultrasound elastography: compression elastography and shear-wave elastography in the assessment of tendon injury. Insights Imaging. 2018;9(5):791–814. https://doi.org/10.1007/s13244-018-0642-1.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Stania M, Juras G, Chmielewska D, Polak A, Kucio C, Król P. Extracorporeal shock wave therapy for Achilles Tendinopathy. BioMed Res Int. 2019;2019: e3086910. https://doi.org/10.1155/2019/3086910.

    Article  Google Scholar 

  49. Njawaya MM, Moses B, Martens D, et al. Ultrasound guidance does not improve the results of shock wave for plantar fasciitis or calcific Achilles tendinopathy: a randomized control Trial. Clin J Sport Med. 2018;28(1):21–7. https://doi.org/10.1097/JSM.0000000000000430.

    Article  PubMed  Google Scholar 

  50. Kakkos GA, Klontzas ME, Koltsakis E, Karantanas AH. US-guided high-volume injection for Achilles tendinopathy. J Ultrason. 2021;21(85):e127-e133. https://doi.org/10.15557/JoU.2021.0021. High-volume peritendinous injection can improve pain associated with Achilles tendinopathy.

  51. Boesen AP, Langberg H, Hansen R, Malliaras P, Boesen MI. High volume injection with and without corticosteroid in chronic midportion Achilles tendinopathy. Scand J Med Sci Sports. 2019;29(8):1223–31. https://doi.org/10.1111/sms.13450. There is no support to add steroid to high-volume injections for Achilles tendinopathy.

    Article  PubMed  Google Scholar 

  52. Wheeler PC, Tattersall C. Novel interventions for recalcitrant Achilles tendinopathy: benefits seen following high-volume image-guided injection or extracorporeal shockwave therapy-a prospective cohort study. Clin J Sport Med Off J Can Acad Sport Med. 2020;30(1):14–9. https://doi.org/10.1097/JSM.0000000000000580. ESWT and high-volume injections are equally effective in treating Achilles tendinopathy.

    Article  Google Scholar 

  53. Boesen AP, Hansen R, Boesen MI, Malliaras P, Langberg H. Effect of high-volume injection, platelet-rich plasma, and sham treatment in chronic midportion Achilles tendinopathy: a randomized double-blinded prospective study. Am J Sports Med. 2017;45(9):2034–43. https://doi.org/10.1177/0363546517702862.

    Article  PubMed  Google Scholar 

  54. Nauwelaers AK, Van Oost L, Peers K. Evidence for the use of PRP in chronic midsubstance Achilles tendinopathy: a systematic review with meta-analysis. Foot Ankle Surg Off J Eur Soc Foot Ankle Surg. 2021;27(5):486–95. https://doi.org/10.1016/j.fas.2020.07.009.

    Article  Google Scholar 

  55. Wang Y, Han C, Hao J, Ren Y, Wang J. Efficacy of platelet-rich plasma injections for treating Achilles tendonitis: systematic review of high-quality randomized controlled trials. Orthopade. 2019;48(9):784–91. https://doi.org/10.1007/s00132-019-03711-y. There is low evidence for use of PRP vs placebo to treat Achilles tendinopathy.

    Article  PubMed  Google Scholar 

  56. Madhi MI, Yausep OE, Khamdan K, Trigkilidas D. The use of PRP in treatment of Achilles tendinopathy: a systematic review of literature. Study design: systematic review of literature. Ann Med Surg. 2020;55:320–6. https://doi.org/10.1016/j.amsu.2020.04.042.

    Article  Google Scholar 

  57. Akoh CC, Phisitkul P. Minimally invasive and endoscopic approach for the treatment of noninsertional Achilles tendinopathy. Foot Ankle Clin. 2019;24(3):495–504. https://doi.org/10.1016/j.fcl.2019.04.007. Sclerotherapy can be used to treat pain associated with Achilles tendinopathy, optimal dosing not known though.

    Article  PubMed  Google Scholar 

  58. The effect of sclerotherapy and prolotherapy on chronic painful Achilles tendinopathy—a systematic review including meta‐analysis - Morath - 2018 - Scandinavian Journal of Medicine & Science in Sports - Wiley Online Library. Accessed December 29, 2021. https://onlinelibrary-wiley-com.proxy.hsl.ucdenver.edu/doi/https://doi.org/10.1111/sms.12898.

  59. Masci L, Neal BS, Wynter Bee W, Spang C, Alfredson H. Achilles scraping and plantaris tendon removal improves pain and tendon structure in patients with mid-portion Achilles tendinopathy-a 24 month follow-up case series. J Clin Med. 2021;10(12):2695. https://doi.org/10.3390/jcm10122695.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ruergård A, Spang C, Alfredson H. Results of minimally invasive Achilles tendon scraping and plantaris tendon removal in patients with chronic midportion Achilles tendinopathy: a longer-term follow-up study. SAGE Open Med. 2019;7:2050312118822642. https://doi.org/10.1177/2050312118822642.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Mattiussi G, Moreno C. Percutaneous electrochemical debridement of the plantaris tendon. J Am Podiatr Med Assoc. 2018;108(5):437–41. https://doi.org/10.7547/17-078.

    Article  PubMed  Google Scholar 

  62. Vajapey S, Ghenbot S, Baria MR, Magnussen RA, Vasileff WK. Utility of percutaneous ultrasonic tenotomy for tendinopathies: a systematic review. Sports Health. Published online November 30, 2020:1941738120951764. https://doi.org/10.1177/1941738120951764.

  63. Chimenti RL, Stover DW, Fick BS, Hall MM. Percutaneous ultrasonic tenotomy reduces insertional Achilles tendinopathy pain with high patient satisfaction and a low complication rate. J Ultrasound Med Off J Am Inst Ultrasound Med. 2019;38(6):1629–35. https://doi.org/10.1002/jum.14835. Percutaneous tenotomy is a good therapeutic solution for insertional achilles tendinopathy.

    Article  Google Scholar 

  64. Lovelock T, Claydon M, Dean A. Functional popliteal artery entrapment syndrome: an approach to diagnosis and management. Int J Sports Med. 2021;42(13):1159–66. https://doi.org/10.1055/a-1524-1703. Botulinum toxin injection may be a good first option prior to surgery for treatment of FPAES.

    CAS  Article  PubMed  Google Scholar 

  65. Meadows JR, Finnoff JT. Lower extremity nerve entrapments in athletes. Curr Sports Med Rep. 2014;13(5):299–306. https://doi.org/10.1249/JSR.0000000000000083.

    Article  PubMed  Google Scholar 

  66. Sánchez M, Yoshioka T, Ortega M, Delgado D, Anitua E. Ultrasound-guided platelet-rich plasma injections for the treatment of common peroneal nerve palsy associated with multiple ligament injuries of the knee. Knee Surg Sports Traumatol Arthrosc Off J ESSKA. 2014;22(5):1084–9. https://doi.org/10.1007/s00167-013-2479-y.

    Article  Google Scholar 

  67. McSweeney SC, Grävare Silbernagel K, Gruber AH, et al. Adolescent running biomechanics - implications for injury prevention and rehabilitation. Front Sports Act Living. 2021;3:230. https://doi.org/10.3389/fspor.2021.689846.

    Article  Google Scholar 

  68. Klöpfer-Krämer I, Brand A, Wackerle H, Müßig J, Kröger I, Augat P. Gait analysis - available platforms for outcome assessment. Injury. 2020;51(Suppl 2):S90–6. https://doi.org/10.1016/j.injury.2019.11.011.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Crystal J. Graff.

Ethics declarations

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Sports Medicine Rehabilitation

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Graff, C.J., Barber, K. & Meron, A. Update on Management of Leg Pain in Athletes. Curr Phys Med Rehabil Rep (2022). https://doi.org/10.1007/s40141-022-00355-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40141-022-00355-6

Keywords

  • Leg pain
  • Athlete
  • Injury
  • Management