Skip to main content

Evidence-Based Management of Medial Tibial Stress Syndrome in Runners

Abstract

Purpose of Review

To present a synthesis of recent literature regarding the risk factors and management for MTSS.

Recent Findings

Risk factors include female sex, prior history of MTSS, less running experience, female athlete triad/RED-S, higher BMI, smoking, and biomechanical abnormalities. Management includes activity modification, gait retraining, orthotics, medications, and, very rarely, surgery.

Summary

MTSS is an overuse injury commonly seen in runners. The pathophysiology remains disputed, and diagnosis is often determined from clinical presentation alone. For unclear reasons, women are at increased risk for development of MTSS. Other risk factors include increased BMI, prior history of MTSS, less running experience, smoking, presence of at least one component of the female athlete triad/RED-S, and biomechanical abnormalities. Treatment often includes cessation of high-impact activity, gait retraining, neuromuscular training, and orthotics. In rare circumstances, surgery may be considered. Identifying risk factors is important for prevention and individualized management.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lopes AD, Junior LCH, Yeung SS, Costa LOP. What are the main running-related musculoskeletal injuries? Sports Med. 2012;15.

  2. Stickley CD, Hetzler RK, Kimura IF, Lozanoff S. Crural fascia and muscle origins related to medial tibial stress syndrome symptom location. Med Sci Sports Exerc. 2009;41(11):1991–6.

    PubMed  Google Scholar 

  3. Bouché RT, Johnson CH. Medial tibial stress syndrome (tibial fasciitis). J Am Podiatr Med Assoc. 2007;97(1):31–6.

    PubMed  Google Scholar 

  4. Johnson SC. Exertional leg pain in runners. In: Clinical care of the runner [Internet]. Elsevier; 2020 [cited 2021 Apr 14]. p. 215–29. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780323679497000197

  5. Beck BR. Tibial stress injuries: an aetiological review for the purposes of guiding management. Sports Med. 1998;26(4):265–79.

    CAS  PubMed  Google Scholar 

  6. •• Winters M, Burr DB, van der Hoeven H, Condon KW, Bellemans J, Moen MH. Microcrack-associated bone remodeling is rarely observed in biopsies from athletes with medial tibial stress syndrome. J Bone Miner Metab. 2019;37(3):496–502. (This cross-sectional study showed that MTSS may be diagnosed with near perfect inter-rater reliability by obtaining a thorough history and physical examination. Imaging is not necessary for diagnosis or prognosis unless the clinical picture is unclear.)

    CAS  PubMed  Google Scholar 

  7. Mattock J, Steele JR, Mickle KJ. A protocol to prospectively assess risk factors for medial tibial stress syndrome in distance runners. BMC Sports Sci Med Rehabil. 2018;10(1):20.

    PubMed  PubMed Central  Google Scholar 

  8. DeHeer PA, Desai A, Altepeter JH. Lower extremity biomechanical examination of athletes. Clin Podiatr Med Surg. 2020;37(1):171–94.

    PubMed  Google Scholar 

  9. Rajasekaran S, Finnoff JT. Exertional leg pain. Phys Med Rehabil Clin N Am. 2016;27(1):91–119.

    PubMed  Google Scholar 

  10. Fredericson M, Bergman AG, Hoffman KL, Dillingham MS. Tibial stress reaction in runners: correlation of clinical symptoms and scintigraphy with a new magnetic resonance imaging grading system. Am J Sports Med. 1995;23(4):472–81.

    CAS  PubMed  Google Scholar 

  11. Winters M, Bon P, Bijvoet S, Bakker EWP, Moen MH. Are ultrasonographic findings like periosteal and tendinous edema associated with medial tibial stress syndrome? A case-control study. Journal of Science and Medicine in Sport. 2017;6.

  12. Moraux A, Gitto S, Bianchi S. Ultrasound features of the normal and pathologic periosteum: ultrasound features of the normal and pathologic periosteum. J Ultrasound Med. 2019;38(3):775–84.

    PubMed  Google Scholar 

  13. Edama M, Onishi H, Kubo M, Takabayashi T, Yokoyama E, Inai T, et al. Gender differences of muscle and crural fascia origins in relation to the occurrence of medial tibial stress syndrome. Scand J Med Sci Sports. 2017;27(2):203–8.

    CAS  PubMed  Google Scholar 

  14. Bliekendaal S, Moen M, Fokker Y, Stubbe JH, Twisk J, Verhagen E. Incidence and risk factors of medial tibial stress syndrome: a prospective study in Physical Education Teacher Education students. BMJ Open Sport Exerc Med. 2018;4(1):e000421.

    PubMed  PubMed Central  Google Scholar 

  15. Reinking MF, Austin TM, Richter RR, Krieger MM. Medial tibial stress syndrome in active individuals: a systematic review and meta-analysis of risk factors. Sports Health. 2017;9(3):252–61.

    PubMed  Google Scholar 

  16. Menéndez C, Batalla L, Prieto A, Rodríguez MÁ, Crespo I, Olmedillas H. Medial tibial stress syndrome in novice and recreational runners: a systematic review. IJERPH. 2020;17(20):7457.

    PubMed Central  Google Scholar 

  17. •• Scheid JL, Stefanik ME. Drive for thinness predicts musculoskeletal injuries in Division II NCAA female athletes. J Funct Morphol Kinesiol. 2019;4(3)https://doi.org/10.3390/jfmk4030052(This study used drive for thinness as a proxy indicator for low energy availability and found that athletes with a higher drive for thinness had a 69% increase in the number of musculoskeletal injuries. MTSS was the second most prevalent injury during the competitive season only behind low back pain/strain/spasm.)

  18. Hamstra-Wright KL, Bliven KCH, Bay C. Risk factors for medial tibial stress syndrome in physically active individuals such as runners and military personnel: a systematic review and meta-analysis. Br J Sports Med. 2015;49(6):362–9.

    PubMed  Google Scholar 

  19. Hubbard, Tricia, et al. “Contributing factors to medial tibial stress syndrome: a prospective investigation.” Medicine and Science in Sports and Exercise, Aug. 2008, pp. 490–496., https://doi.org/10.1249/MSS.0b013e31818b98e6.

  20. Nattiv A, Loucks A, Manore M, Charlotte S. The female athlete triad. Med Sci Sports Exerc. 2007;39(10):1867–82.

    PubMed  Google Scholar 

  21. Mountjoy M, Sundgot-Borgen J, Burke L, Carter S, Constantini N, Lebrun C, et al. The IOC consensus statement: beyond the female athlete triad—relative energy deficiency in sport (RED-S). Br J Sports Med. 2014;48(7):491–7.

    PubMed  Google Scholar 

  22. Bishop, Meghan E, et al. “Bone stress injuries in female athletes.” Annals of Joint , 20 Mar. 2020, pp. 1–10., https://doi.org/10.21037/aoj.2020.04.04.

  23. Sharma J, Golby J, Greeves J, Spears IR. Biomechanical and lifestyle risk factors for medial tibia stress syndrome in army recruits: a prospective study. Gait Posture. 2011;33(3):361–5. https://doi.org/10.1016/j.gaitpost.2010.12.002.

    Article  PubMed  Google Scholar 

  24. Nieves JW, Melsop K, Curtis M, Kelsey JL, Bachrach LK, Greendale G, et al. Nutritional factors that influence change in bone density and stress fracture risk among young female cross-country runners. PM&R. 2010;2(8):740–50.

    Google Scholar 

  25. Tenforde AS, Sayres LC, Sainani KL, Fredericson M. Evaluating the relationship of calcium and vitamin D in the prevention of stress fracture injuries in the young athlete: a review of the literature. PM&R. 2010;2(10):945–9.

    Google Scholar 

  26. Griffin KL, Knight KB, Bass MA, Valliant MW. Predisposing risk factors for stress fractures in collegiate cross-country runners. J Strength Cond Res. 2021;35(1):227–32. https://doi.org/10.1519/JSC.0000000000002408.

    Article  PubMed  Google Scholar 

  27. Warden SJ, Davis IS, Fredericson M. Management and prevention of bone stress injuries in long-distance runners. J Orthop Sports Phys Ther. 2014;44(10):749–65. https://doi.org/10.2519/jospt.2014.5334.

    Article  PubMed  Google Scholar 

  28. Institute of Medicine. Dietary reference intakes for calcium and vitamin D. Washington, DC: National Academy of Sciences; 2010.

    Google Scholar 

  29. Okunuki T, Koshino Y, Yamanaka M, Tsutsumi K, Igarashi M, Samukawa M, et al. Forefoot and hindfoot kinematics in subjects with medial tibial stress syndrome during walking and running. J Orthop Res. 2019;37(4):927–32.

    PubMed  Google Scholar 

  30. Daoud AI, Geissler GJ, Wang F, Saretsky J, Daoud YA, Lieberman DE. Foot strike and injury rates in endurance runners: a retrospective study. Med Sci Sports Exerc. 2012;44(7):1325–34.

    PubMed  Google Scholar 

  31. Krabak BJ, Tenforde AS, Davis IS, Fredericson M, Harrast MA, d’Hemecourt P, et al. Youth distance running: strategies for training and injury reduction. Curr Sports Med Rep. 2019;18(2):53–9.

    PubMed  Google Scholar 

  32. Altman AR, Davis IS. Prospective comparison of running injuries between shod and barefoot runners. Br J Sports Med. 2016;50(8):476–80.

    PubMed  Google Scholar 

  33. Goss DL, Lewek M, Yu B, Ware WB, Teyhen DS, Gross MT. Lower extremity biomechanics and self-reported foot-strike patterns among runners in traditional and minimalist shoes. J Athl Train. 2015;50(6):603–11.

    PubMed  PubMed Central  Google Scholar 

  34. Galbraith RM, Lavallee ME. Medial tibial stress syndrome: conservative treatment options. Curr Rev Musculoskelet Med. 2009;2(3):127e133.

    Google Scholar 

  35. Winkelmann ZK, Anderson D, Games KE, Eberman LE. Risk factors for medial tibial stress syndrome in active individuals: an evidence-based review. J Athl Train. 2016;51(12):1049–52.

    PubMed  PubMed Central  Google Scholar 

  36. Becker J, James S, Wayner R, Osternig L, Chou L-S. Biomechanical factors associated with Achilles tendinopathy and medial tibial stress syndrome in runners. Am J Sports Med. 2017;45(11):2614–21.

    PubMed  Google Scholar 

  37. Reshef N, Guelich DR. Medial tibial stress syndrome. Clin Sports Med. 2012;31(2):273–90.

    PubMed  Google Scholar 

  38. Moen MH, Tol JL, Weir A, Steunebrink M, De WTC. Medial tibial stress syndrome a critical review. Sport Med. 2009;39(7):523e546.

    Google Scholar 

  39. Kortebein P, Kaufman K, Basford J, et al. Medial tibial stress syndrome. Med Sci Sports Exerc. 2000;32(3 Suppl):S27eS33.

    Google Scholar 

  40. Jeffcoach DR, Sams VG, Lawson CM, et al. Nonsteroidal anti-inflammatory drugs’ impact on nonunion and infection rates in long-bone fractures. J Trauma Acute Care Surg. 2014;76(3):779–83.

    CAS  PubMed  Google Scholar 

  41. Leonelli SM, Goldberg BA, Safanda J, Bagwe MR, Sethuratnam S, King SJ. Effects of a cyclooxygenase-2 inhibitor (rofecoxib) on bone healing. Am J Orthop (Belle Mead NJ). 2006;35(2):79–84.

    Google Scholar 

  42. Gerstenfeld LC, Thiede M, Seibert K, et al. Differential inhibition of fracture healing by non-selective and cyclooxygenase-2 selective non-steroidal anti-inflammatory drugs. J Orthop Res. 2003;21(4):670–5.

    CAS  PubMed  Google Scholar 

  43. Endo K, Sairyo K, Komatsubara S, et al. Cyclooxygenase-2 inhibitor inhibits the fracture healing. J Physiol Anthropol Appl Human Sci. 2002;21(5):235–8.

    PubMed  Google Scholar 

  44. Zhang X, Schwarz EM, Young DA, Puzas JE, Rosier RN, O’Keefe RJ. Cyclooxygenase-2 regulates mesenchymal cell differentiation into the osteoblast lineage and is critically involved in bone repair. J Clin Invest. 2002;109(11):1405–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Chow JW, Chambers TJ. Indomethacin has distinct early and late actions on bone formation induced by mechanical stimulation. Am J Physiol. 1994;267(2 Pt 1):E287–92.

    CAS  PubMed  Google Scholar 

  46. Pead MJ, Lanyon LE. Indomethacin modulation of load-related stimulation of new bone formation in vivo. Calcif Tissue Int. 1989;45(1):34–40.

    CAS  PubMed  Google Scholar 

  47. Forwood MR. Inducible cyclo-oxygenase (COX-2) mediates the induction of bone formation by mechanical loading in vivo. J Bone Miner Res. 1996;11(11):1688–93.

    CAS  PubMed  Google Scholar 

  48. Hughes JM, McKinnon CJ, Taylor KM, et al. Nonsteroidal anti-inflammatory drug prescriptions are associated with increased stress fracture diagnosis in the US army population. J Bone Miner Res. 2019;34(3):429–36. https://doi.org/10.1002/jbmr.3616.

    Article  CAS  PubMed  Google Scholar 

  49. Agresta C, Brown A. Gait retraining for injured and healthy runners using augmented feedback: a systematic literature review. J Orthop Sports Phys Ther. 2015;45(8):576–84.

    PubMed  Google Scholar 

  50. •• Mendez-Rebolledo G, Figueroa-Ureta R, Moya-Mura F, Guzmán-Muñoz E, Ramirez-Campillo R, Lloyd RS. The protective effect of neuromuscular training on the medial tibial stress syndrome in youth female track-and-field athletes: a clinical trial and cohort study. J Sport Rehabil. 2021;20:1–9. (This is the only randomized controlled trial in recent literature that evaluates the role of neuromuscular training in prevention of MTSS in female athletes. A dedicated neuromuscular training program reduces incidence rate of lower extremity injury, with a particularly protective effect against development of MTSS.)

    Google Scholar 

  51. Herring KM. A plyometric training model used to augment rehabilitation from tibial fasciitis. Curr Sports Med Rep. 2006;5(3):147–54.

    PubMed  Google Scholar 

  52. Kohrt WM, Bloomfield SA, Little KD, et al. Physical activity and bone health. Med Sci Sport Exerc. 2004;36(11):1985–96.

    Google Scholar 

  53. Sharma J, et al. Gait retraining and incidence of medial tibial stress syndrome in army recruits. Med Sci Sports Exerc. 2014;46(9):1684–92. https://doi.org/10.1249/MSS.0000000000000290.

    Article  PubMed  Google Scholar 

  54. Mattock J, Steele JR, Mickle KJ. A protocol to prospectively assess risk factors for medial tibial stress syndrome in distance runners. BMC Sports Sci Med Rehabil. 2018;10:20. https://doi.org/10.1186/s13102-018-0109-1.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Naderi A, Degens H, Sakinepoor A. Arch-support foot-orthoses normalize dynamic in-shoe foot pressure distribution in medial tibial stress syndrome. Eur J Sport Sci. 2019;19(2):247–57.

    PubMed  Google Scholar 

  56. McNeill D, De Heert H, Bounds R, et al. Accuracy of unloading with the anti-gravity treadmill. J Strength Cond Res. 2015;29(3):863e868.

    Google Scholar 

  57. Moen MH, Rayer S, Schipper M, et al. Shockwave treatment for medial tibial stress syndrome in athletes; a prospective controlled study. Br J Sports Med. 2012;46(4):253e257.

    Google Scholar 

  58. Reilly JM, Bluman E, Tenforde AS. Narrative review on the effect of shockwave treatment for management of upper and lower extremity musculoskeletal conditions. Pharm Manag PM R. 2018:1e19.

  59. Kelly JL, Valier AR. The use of orthotic insoles to prevent lower limb overuse injuries: a critically appraised topic. J Sport Rehabil. 2018;27(6):591–5. https://doi.org/10.1123/jsr.2016-0142.

    Article  PubMed  Google Scholar 

  60. Craig DI. Medial tibial stress syndrome: evidence-based prevention. J Athl Train. 2008;43(3):316–8.

    PubMed  PubMed Central  Google Scholar 

  61. Griebert MC, Needle AR, McConnell J, Kaminski TW. Lower-leg Kinesio tape reduces rate of loading in participants with medial tibial stress syndrome. Phys Ther Sport. 2016;18:62–7. https://doi.org/10.1016/j.ptsp.2014.01.001.

    Article  PubMed  Google Scholar 

  62. Holen KJ, Engebretsen L, Grøntvedt T, Rossvoll I, Hammer S, Stoltz V. Surgical treatment of medial tibial stress syndrome (shin splint) by fasciotomy of the superficial posterior compartment of the leg. Scand J Med Sci Sports. 1995;5(1):40–3. https://doi.org/10.1111/j.1600-0838.1995.tb00009.x.

    Article  CAS  PubMed  Google Scholar 

  63. Yates B, Allen MJ, Barnes MR. Outcome of surgical treatment of medial tibial stress syndrome. J Bone Joint Surg Am. 2003;85(10):1974–80. https://doi.org/10.2106/00004623-200310000-00017.

    Article  PubMed  Google Scholar 

  64. Bolthouse E, Hunt A, Mandrachia K, Monarski L, Lee K. Return to running after a tibial stress fracture: a suggested protocol. Accessed July 12, 2021. https://www.semanticscholar.org/paper/Return-to-Running-After-a-Tibial-Stress-Fracture-%3A-Bolthouse-Hunt/3361f91d8b3b1d9b4984a41c3ea53c2aa2157ffb

  65. Martini L, Giavaresi G, Fini M, et al. Effect of extracorporeal shock wave therapy on osteoblastlike cells. Clin Orthop Relat Res. 2003;413:269–80.

    Google Scholar 

  66. Wang FS, Wang CJ, Chen YJ, et al. Ras induction of superoxide activates ERK-dependent angiogenic transcription factor HIF-1alpha and VEGF-A expression in shock wave-stimulated osteoblasts. J Biol Chem. 2004;279:10331–7.

    CAS  PubMed  Google Scholar 

  67. Tamma R, dell’Endice S, Notarnicola A, et al. Extracorporeal shock waves stimulate osteoblast activities. Ultrasound Med Biol. 2009;35:2093–100.

    PubMed  Google Scholar 

  68. Schroeder AN, Tenforde AS, Jelsing EJ. Extracorporeal shockwave therapy in the management of sports medicine injuries. Curr Sports Med Rep. 2021;20(6):298–305. https://doi.org/10.1249/JSR.0000000000000851.

    Article  PubMed  Google Scholar 

  69. Dirk de Heer H, Kline JR, Charley B. Anti-gravity treadmill training for prevention and rehabilitation of running injuries. In: Clinical care of the runner [Internet]. Elsevier; 2020 [cited 2021 Aug 3]. p. 113–30. Available from: https://linkinghub.elsevier.com/retrieve/pii/B97803236794970001241.

  70. Maurel DB, Boisseau N, Benhamou CL, Jaffre C. Alcohol and bone: review of dose effects and mechanisms. Osteoporos Int. 2012;23(1):1–16.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Kuwabara.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Sports Medicine Rehabilitation

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kuwabara, A., Dyrek, P., Olson, E.M. et al. Evidence-Based Management of Medial Tibial Stress Syndrome in Runners. Curr Phys Med Rehabil Rep 9, 177–185 (2021). https://doi.org/10.1007/s40141-021-00326-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40141-021-00326-3

Keywords

  • Medial tibial stress syndrome
  • Shin splints