Patellar Dislocations: Review of Current Literature and Return to Play Potential

Sports Medicine Rehabilitation (B Liem and BJ Krabak, Section Editors)
  • 9 Downloads
Part of the following topical collections:
  1. Topical Collection on Sports Medicine Rehabilitation

Abstract

Acute patellar dislocation is a common cause of traumatic hemarthrosis and is associated with multiple anatomical abnormalities including patella alta, trochlea dysplasia, and malalignment of lower limbs. The medial patellofemoral ligament (MPFL) stabilizes the patella in the early flexion or terminal extension and ruptures in most of first-time patellar dislocations. Thorough radiological evaluations of the MPFL and predisposing anatomical properties are required for the planning of management of recurrent instability. Conservative treatment is the mainstay management of first-time patellar dislocation and achieves good to excellent outcome in most of the patients. Surgery is indicated for recurrent patellar dislocations and first-time patellar dislocations complicated by osteochondral injuries or major MPFL injuries with high functional demand. Return to sports requires painless full range of motion and symmetrical muscle strength in addition to focusing on sport-specific training. Home exercise and behavior modifications in ADLs are important to decrease the reoccurrence of patellar dislocation/subluxation.

Keywords

Patellar dislocation Patellar instability Knee pain MPFL 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

  1. 1.
    Clark D, Metcalfe A, Wogan C, Mandalia V, Eldridge J. Adolescent patellar instability: current concepts review. Bone Joint J. 2017;99-b(2):159–70.CrossRefPubMedGoogle Scholar
  2. 2.
    Conchie H, Clark D, Metcalfe A, Eldridge J, Whitehouse M. Adolescent knee pain and patellar dislocations are associated with patellofemoral osteoarthritis in adulthood: a case control study. Knee. 2016;23(4):708–11.CrossRefPubMedGoogle Scholar
  3. 3.
    Salonen EE, Magga T, Sillanpaa PJ, Kiekara T, Maenpaa H, Mattila VM. Traumatic patellar dislocation and cartilage injury: a follow-up study of long-term cartilage deterioration. Am J Sports Med. 2017;45(6):1376–82.CrossRefPubMedGoogle Scholar
  4. 4.
    Batra S, Arora S. Habitual dislocation of patella: a review. J Clin Orthop Traumatol. 2014;5(4):245–51.CrossRefGoogle Scholar
  5. 5.
    Stefancin JJ, Parker RD. First-time traumatic patellar dislocation: a systematic review. Clin Orthop Relat Res. 2007;455:93–101.CrossRefPubMedGoogle Scholar
  6. 6.
    Duthon VB. Acute traumatic patellar dislocation. Orthop Traumatol Surg Res. 2015;101(1 Suppl):S59–67.CrossRefPubMedGoogle Scholar
  7. 7.
    Fithian DC, Paxton EW, Stone ML, Silva P, Davis DK, Elias DA, et al. Epidemiology and natural history of acute patellar dislocation. Am J Sports Med. 2004;32(5):1114–21.CrossRefPubMedGoogle Scholar
  8. 8.
    Lewallen L, McIntosh A, Dahm D. First-time patellofemoral dislocation: risk factors for recurrent instability. J Knee Surg. 2015;28(4):303–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Sillanpaa P, Mattila VM, Iivonen T, Visuri T, Pihlajamaki H. Incidence and risk factors of acute traumatic primary patellar dislocation. Med Sci Sports Exerc. 2008;40(4):606–11.CrossRefPubMedGoogle Scholar
  10. 10.
    Panni AS, Vasso M, Cerciello S. Acute patellar dislocation. What to do? Knee Surg Sports Traumatol Arthrosc. 2013;21(2):275–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Weber AE, Nathani A, Dines JS, Allen AA, Shubin-Stein BE, Arendt EA, et al. An algorithmic approach to the management of recurrent lateral patellar dislocation. J Bone Joint Surg Am. 2016;98(5):417–27.CrossRefPubMedGoogle Scholar
  12. 12.
    Buchner M, Baudendistel B, Sabo D, Schmitt H. Acute traumatic primary patellar dislocation: long-term results comparing conservative and surgical treatment. Clin J Sport Med. 2005;15(2):62–6.CrossRefPubMedGoogle Scholar
  13. 13.
    Palmu S, Kallio PE, Donell ST, Helenius I, Nietosvaara Y. Acute patellar dislocation in children and adolescents: a randomized clinical trial. J Bone Joint Surg Am. 2008;90(3):463–70.CrossRefPubMedGoogle Scholar
  14. 14.
    Petri M, von Falck C, Broese M, Liodakis E, Balcarek P, Niemeyer P, et al. Influence of rupture patterns of the medial patellofemoral ligament (MPFL) on the outcome after operative treatment of traumatic patellar dislocation. Knee Surg Sports Traumatol Arthrosc. 2013;21(3):683–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Arendt EA, Dahm DL, Dejour D, Fithian DC. Patellofemoral joint: from instability to arthritis. Instr Course Lect. 2014;63:355–68.PubMedGoogle Scholar
  16. 16.
    McConnell J. Rehabilitation and nonoperative treatment of patellar instability. Sports Med Arthrosc Rev. 2007;15(2):95–104.CrossRefPubMedGoogle Scholar
  17. 17.
    Ahmad CS, Stein BE, Matuz D, Henry JH. Immediate surgical repair of the medial patellar stabilizers for acute patellar dislocation. A review of eight cases. Am J Sports Med. 2000;28(6):804–10.CrossRefPubMedGoogle Scholar
  18. 18.
    Askenberger M, Janarv PM, Finnbogason T, Arendt EA. Morphology and anatomic patellar instability risk factors in first-time traumatic lateral patellar dislocations: a prospective magnetic resonance imaging study in skeletally immature children. Am J Sports Med. 2017;45(1):50–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Insall J, Goldberg V, Salvati E. Recurrent dislocation and the high-riding patella. Clin Orthop Relat Res. 1972;88:67–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Steensen RN, Bentley JC, Trinh TQ, Backes JR, Wiltfong RE. The prevalence and combined prevalences of anatomic factors associated with recurrent patellar dislocation: a magnetic resonance imaging study. Am J Sports Med. 2015;43(4):921–7.CrossRefPubMedGoogle Scholar
  21. 21.
    Senavongse W, Amis AA. The effects of articular, retinacular, or muscular deficiencies on patellofemoral joint stability: a biomechanical study in vitro. J Bone Joint Surg Br Vol. 2005;87(4):577–82.CrossRefGoogle Scholar
  22. 22.
    Christoforakis J, Bull AM, Strachan RK, Shymkiw R, Senavongse W, Amis AA. Effects of lateral retinacular release on the lateral stability of the patella. Knee Surg Sports Traumatol Arthrosc. 2006;14(3):273–7.CrossRefPubMedGoogle Scholar
  23. 23.
    Tuxoe JI, Teir M, Winge S, Nielsen PL. The medial patellofemoral ligament: a dissection study. Knee Surg Sports Traumatol Arthrosc. 2002;10(3):138–40.CrossRefPubMedGoogle Scholar
  24. 24.
    Amis AA, Firer P, Mountney J, Senavongse W, Thomas NP. Anatomy and biomechanics of the medial patellofemoral ligament. Knee. 2003;10(3):215–20.CrossRefPubMedGoogle Scholar
  25. 25.
    Diederichs G, Issever AS, Scheffler S. MR imaging of patellar instability: injury patterns and assessment of risk factors. Radiographics. 2010;30(4):961–81.CrossRefPubMedGoogle Scholar
  26. 26.
    Panni AS, Alam M, Cerciello S, Vasso M, Maffulli N. Medial patellofemoral ligament reconstruction with a divergent patellar transverse 2-tunnel technique. Am J Sports Med. 2011;39(12):2647–55.CrossRefPubMedGoogle Scholar
  27. 27.
    Desio SM, Burks RT, Bachus KN. Soft tissue restraints to lateral patellar translation in the human knee. Am J Sports Med. 1998;26(1):59–65.CrossRefPubMedGoogle Scholar
  28. 28.
    Kang HJ, Wang F, Chen BC, Zhang YZ, Ma L. Non-surgical treatment for acute patellar dislocation with special emphasis on the MPFL injury patterns. Knee Surg Sports Traumatol Arthrosc. 2013;21(2):325–31.CrossRefPubMedGoogle Scholar
  29. 29.
    Felus J, Kowalczyk B. Age-related differences in medial patellofemoral ligament injury patterns in traumatic patellar dislocation: case series of 50 surgically treated children and adolescents. Am J Sports Med. 2012;40(10):2357–64.CrossRefPubMedGoogle Scholar
  30. 30.
    Sillanpaa PJ, Maenpaa HM. First-time patellar dislocation: surgery or conservative treatment? Sports Med Arthrosc Rev. 2012;20(3):128–35.CrossRefPubMedGoogle Scholar
  31. 31.
    Reider B, Marshall JL, Koslin B, Ring B, Girgis FG. The anterior aspect of the knee joint. J Bone Joint Surg Am. 1981;63(3):351–6.CrossRefPubMedGoogle Scholar
  32. 32.
    Koh JL, Stewart C. Patellar instability. Orthop Clin N Am. 2015;46(1):147–57.CrossRefGoogle Scholar
  33. 33.
    Fulkerson JP, Gossling HR. Anatomy of the knee joint lateral retinaculum. Clin Orthop Relat Res. 1980;153:183–8.Google Scholar
  34. 34.
    Goh JC, Lee PY, Bose K. A cadaver study of the function of the oblique part of vastus medialis. J Bone Joint Surg Br Vol. 1995;77(2):225–31.CrossRefGoogle Scholar
  35. 35.
    Farahmand F, Senavongse W, Amis AA. Quantitative study of the quadriceps muscles and trochlear groove geometry related to instability of the patellofemoral joint. J Orthop Res. 1998;16(1):136–43.CrossRefPubMedGoogle Scholar
  36. 36.
    Wong YM. Recording the vastii muscle onset timing as a diagnostic parameter for patellofemoral pain syndrome: fact or fad? Phys Ther Sport. 2009;10(2):71–4.CrossRefPubMedGoogle Scholar
  37. 37.
    Dejour H, Walch G, Nove-Josserand L, Guier C. Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc. 1994;2(1):19–26.CrossRefPubMedGoogle Scholar
  38. 38.
    Han Y, Duan D, Zhao K, Wang X, Ouyang L, Liu G. Investigation of the relationship between flatfoot and patellar subluxation in adolescents. J Foot Ankle Surg. 2017;56(1):15–8.CrossRefPubMedGoogle Scholar
  39. 39.
    Nguyen A-D, Boling MC, Levine B, Shultz SJ. Relationships between lower extremity alignment and the quadriceps angle. Clin J Sport Med. 2009;19(3):201–6.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Cooney AD, Kazi Z, Caplan N, Newby M, St Clair Gibson A, Kader DF. The relationship between quadriceps angle and tibial tuberosity-trochlear groove distance in patients with patellar instability. Knee Surg Sports Traumatol Arthrosc. 2012;20(12):2399–404.CrossRefPubMedGoogle Scholar
  41. 41.
    Sheehan FT, Derasari A, Fine KM, Brindle TJ, Alter KE. Q-angle and J-sign: indicative of maltracking subgroups in patellofemoral pain. Clin Orthop Relat Res. 2010;468(1):266–75.CrossRefPubMedGoogle Scholar
  42. 42.
    Tompkins MA, Arendt EA. Patellar instability factors in isolated medial patellofemoral ligament reconstructions—what does the literature tell us? A systematic review. Am J Sports Med. 2015;43(9):2318–27.CrossRefPubMedGoogle Scholar
  43. 43.
    Dietrich TJ, Fucentese SF, Pfirrmann CW. Imaging of individual anatomical risk factors for patellar instability. Semin Musculoskelet Radiol. 2016;20(1):65–73.CrossRefPubMedGoogle Scholar
  44. 44.
    Elias DA, White LM, Fithian DC. Acute lateral patellar dislocation at MR imaging: injury patterns of medial patellar soft-tissue restraints and osteochondral injuries of the inferomedial patella. Radiology. 2002;225(3):736–43.CrossRefPubMedGoogle Scholar
  45. 45.
    Sillanpaa PJ, Peltola E, Mattila VM, Kiuru M, Visuri T, Pihlajamaki H. Femoral avulsion of the medial patellofemoral ligament after primary traumatic patellar dislocation predicts subsequent instability in men: a mean 7-year nonoperative follow-up study. Am J Sports Med. 2009;37(8):1513–21.CrossRefPubMedGoogle Scholar
  46. 46.
    Askenberger M, Arendt EA, Ekstrom W, Voss U, Finnbogason T, Janarv PM. Medial patellofemoral ligament injuries in children with first-time lateral patellar dislocations: a magnetic resonance imaging and arthroscopic study. Am J Sports Med. 2016;44(1):152–8.CrossRefPubMedGoogle Scholar
  47. 47.
    Zhang GY, Zheng L, Ding HY, Li EM, Sun BS, Shi H. Evaluation of medial patellofemoral ligament tears after acute lateral patellar dislocation: comparison of high-frequency ultrasound and MR. Eur Radiol. 2015;25(1):274–81.CrossRefPubMedGoogle Scholar
  48. 48.
    Biedert RM, Albrecht S. The patellotrochlear index: a new index for assessing patellar height. Knee Surg Sports Traumatol Arthrosc. 2006;14(8):707–12.CrossRefPubMedGoogle Scholar
  49. 49.
    Nizic D, Pervan M, Kovacevic B. A new reference line in diagnosing a high-riding patella on routine digital lateral radiographs of the knee. Skelet Radiol. 2014;43(8):1129–37.CrossRefGoogle Scholar
  50. 50.
    Lee PP, Chalian M, Carrino JA, Eng J, Chhabra A. Multimodality correlations of patellar height measurement on X-ray, CT, and MRI. Skelet Radiol. 2012;41(10):1309–14.CrossRefGoogle Scholar
  51. 51.
    Thevenin-Lemoine C, Ferrand M, Courvoisier A, Damsin JP, Ducou le Pointe H, Vialle R. Is the Caton-Deschamps index a valuable ratio to investigate patellar height in children? J Bone Joint Surg Am. 2011;93(8):e35.CrossRefPubMedGoogle Scholar
  52. 52.
    Koeter S, Bongers EM, de Rooij J, van Kampen A. Minimal rotation aberrations cause radiographic misdiagnosis of trochlear dysplasia. Knee Surg Sports Traumatol Arthrosc. 2006;14(8):713–7.CrossRefPubMedGoogle Scholar
  53. 53.
    Skelley N, Friedman M, McGinnis M, Smith C, Hillen T, Matava M. Inter- and intraobserver reliability in the MRI measurement of the tibial tubercle-trochlear groove distance and trochlea dysplasia. Am J Sports Med. 2015;43(4):873–8.CrossRefPubMedGoogle Scholar
  54. 54.
    Ho CP, James EW, Surowiec RK, Gatlin CC, Ellman MB, Cram TR, et al. Systematic technique-dependent differences in CT versus MRI measurement of the tibial tubercle-trochlear groove distance. Am J Sports Med. 2015;43(3):675–82.CrossRefPubMedGoogle Scholar
  55. 55.
    Dickens AJ, Morrell NT, Doering A, Tandberg D, Treme G. Tibial tubercle-trochlear groove distance: defining normal in a pediatric population. J Bone Joint Surg Am. 2014;96(4):318–24.CrossRefPubMedGoogle Scholar
  56. 56.
    Mundy A, Ravindra A, Yang J, Adler BH, Klingele KE. Standardization of patellofemoral morphology in the pediatric knee. Pediatr Radiol. 2016;46(2):255–62.CrossRefPubMedGoogle Scholar
  57. 57.
    Laurin CA, Levesque HP, Dussault R, Labelle H, Peides JP. The abnormal lateral patellofemoral angle: a diagnostic roentgenographic sign of recurrent patellar subluxation. J Bone Joint Surg Am. 1978;60(1):55–60.CrossRefPubMedGoogle Scholar
  58. 58.
    Diederichs G, Kohlitz T, Kornaropoulos E, Heller MO, Vollnberg B, Scheffler S. Magnetic resonance imaging analysis of rotational alignment in patients with patellar dislocations. Am J Sports Med. 2013;41(1):51–7.CrossRefPubMedGoogle Scholar
  59. 59.
    Hinton RY, Sharma KM. Acute and recurrent patellar instability in the young athlete. Orthop Clin N Am. 2003;34(3):385–96.CrossRefGoogle Scholar
  60. 60.
    van Gemert JP, de Vree LM, Hessels RA, Gaakeer MI. Patellar dislocation: cylinder cast, splint or brace? An evidence-based review of the literature. Int J Emerg Med. 2012;5(1):45.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Maenpaa H, Lehto MU. Patellar dislocation. The long-term results of nonoperative management in 100 patients. Am J Sports Med. 1997;25(2):213–7.CrossRefPubMedGoogle Scholar
  62. 62.
    Fujita N, Murakami S, Arakawa T, Miki A, Fujino H. The combined effect of electrical stimulation and resistance isometric contraction on muscle atrophy in rat tibialis anterior muscle. Bosn J Basic Med Sci. 2011;11(2):74–9.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Stensdotter AK, Hodges PW, Mellor R, Sundelin G, Hager-Ross C. Quadriceps activation in closed and in open kinetic chain exercise. Med Sci Sports Exerc. 2003;35(12):2043–7.CrossRefPubMedGoogle Scholar
  64. 64.
    Earl JE, Hoch AZ. A proximal strengthening program improves pain, function, and biomechanics in women with patellofemoral pain syndrome. Am J Sports Med. 2011;39(1):154–63.CrossRefPubMedGoogle Scholar
  65. 65.
    Hott A, Liavaag S, Juel NG, Brox JI. Study protocol: a randomised controlled trial comparing the long term effects of isolated hip strengthening, quadriceps-based training and free physical activity for patellofemoral pain syndrome (anterior knee pain). BMC Musculoskelet Disord. 2015;16:40.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Dolak KL, Silkman C, Medina McKeon J, Hosey RG, Lattermann C, Uhl TL. Hip strengthening prior to functional exercises reduces pain sooner than quadriceps strengthening in females with patellofemoral pain syndrome: a randomized clinical trial. J Orthop Sports Phys Ther. 2011;41(8):560–70.CrossRefPubMedGoogle Scholar
  67. 67.
    Smith TO, Chester R, Clark A, Donell ST, Stephenson R. A national survey of the physiotherapy management of patients following first-time patellar dislocation. Physiotherapy. 2011;97(4):327–38.CrossRefPubMedGoogle Scholar
  68. 68.
    Smith TO, Chester R, Cross J, Hunt N, Clark A, Donell ST. Rehabilitation following first-time patellar dislocation: a randomised controlled trial of purported vastus medialis obliquus muscle versus general quadriceps strengthening exercises. Knee. 2015;22(4):313–20.CrossRefPubMedGoogle Scholar
  69. 69.
    Cowan SM, Hodges PW, Crossley KM, Bennell KL. Patellar taping does not change the amplitude of electromyographic activity of the vasti in a stair stepping task. Br J Sports Med. 2006;40(1):30–4.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Kilbreath SL, Perkins S, Crosbie J, McConnell J. Gluteal taping improves hip extension during stance phase of walking following stroke. Aust J Physiother. 2006;52(1):53–6.CrossRefPubMedGoogle Scholar
  71. 71.
    McCarthy Persson U, Fleming HF, Caulfield B. The effect of a vastus lateralis tape on muscle activity during stair climbing. Man Ther. 2009;14(3):330–7.CrossRefPubMedGoogle Scholar
  72. 72.
    Smith TO, Davies L, Chester R, Clark A, Donell ST. Clinical outcomes of rehabilitation for patients following lateral patellar dislocation: a systematic review. Physiotherapy. 2010;96(4):269–81.CrossRefPubMedGoogle Scholar
  73. 73.
    Menetrey J, Putman S, Gard S. Return to sport after patellar dislocation or following surgery for patellofemoral instability. Knee Surg Sports Traumatol Arthrosc. 2014;22(10):2320–6.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Sillanpaa PJ, Mattila VM, Maenpaa H, Kiuru M, Visuri T, Pihlajamaki H. Treatment with and without initial stabilizing surgery for primary traumatic patellar dislocation. A prospective randomized study. J Bone Joint Surg Am. 2009;91(2):263–73.CrossRefPubMedGoogle Scholar
  75. 75.
    Nikku R, Nietosvaara Y, Aalto K, Kallio PE. Operative treatment of primary patellar dislocation does not improve medium-term outcome: a 7-year follow-up report and risk analysis of 127 randomized patients. Acta Orthop. 2005;76(5):699–704.CrossRefPubMedGoogle Scholar
  76. 76.
    Smith TO, Donell S, Song F, Hing CB. Surgical versus non-surgical interventions for treating patellar dislocation. Cochrane Database Syst Rev. 2015;2:Cd008106.Google Scholar
  77. 77.
    Nwachukwu BU, So C, Schairer WW, Green DW, Dodwell ER. Surgical versus conservative management of acute patellar dislocation in children and adolescents: a systematic review. Knee Surg Sports Traumatol Arthrosc. 2016;24(3):760–7.CrossRefPubMedGoogle Scholar
  78. 78.
    Smith TO, Song F, Donell ST, Hing CB. Operative versus non-operative management of patellar dislocation. A meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2011;19(6):988–98.CrossRefPubMedGoogle Scholar
  79. 79.
    Fisher B, Nyland J, Brand E, Curtin B. Medial patellofemoral ligament reconstruction for recurrent patellar dislocation: a systematic review including rehabilitation and return-to-sports efficacy. Arthroscopy. 2010;26(10):1384–94.CrossRefPubMedGoogle Scholar
  80. 80.
    Bizzini M, Hancock D, Impellizzeri F. Suggestions from the field for return to sports participation following anterior cruciate ligament reconstruction: soccer. J Orthop Sports Phys Ther. 2012;42(4):304–12.CrossRefPubMedGoogle Scholar
  81. 81.
    Monson J, Arendt EA. Rehabilitative protocols for select patellofemoral procedures and nonoperative management schemes. Sports Med Arthrosc Rev. 2012;20(3):136–44.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physical Medicine and RehabilitationVanderbilt University Medical CenterNashvilleUSA

Personalised recommendations