Advertisement

Autoimmunity and Traumatic Brain Injury

  • Zhihui YangEmail author
  • Tian Zhu
  • Amenda S. Weissman
  • Emily Jaalouk
  • Disa S Rathore
  • Pammela Romo
  • Yuan Shi
  • Amy K. Wagner
  • Kevin K. W. WangEmail author
Traumatic Brain Injury Rehabilitation (AK Wagner, Section Editor)
Part of the following topical collections:
  1. Traumatic Brain Injury Rehabilitation

Abstract

Purpose of Review

Traumatic brain injury (TBI) causes injured brain cells to release brain-specific proteins, which may trigger an autoantibody response. In this review, we will discuss how autoimmunity is triggered after TBI and summarize the identified brain antigens to which an autoimmune response has been observed as well as their clinical implications.

Recent Findings

TBI leads injured brain cells to release brain proteins, in their intact or proteolytic fragment form, into extracellular fluids and eventually into circulating blood. These brain proteins treated by the immune system as foreign antigens can evoke the systemic production of both IgM and IgG isoforms. Increasing evidence shows that in a subset of TBI patients, there are circulating autoantibodies recognizing a range of brain proteins, including glial proteins like S100B, glial fibrillary acidic protein, and peroxirerdoxin; neuroreceptors such as glutamate receipt subunits NR1; and oligodendrocyte-originated myelin basic protein.

Summary

Autoimmunity is triggered in TBI, targeting a range of brain-specific antigens in a subset of TBI patients. Such autoantibodies might be useful for biofluid-based diagnosis in order to identify patients who might benefit from immunotherapy.

Keywords

Autoimmunity Brain injury Autoantibodies Biomarker 

Notes

Acknowledgements

This study is supported in part by NIH R21NS085455-01 (K.K.W.), NIH 1U01 NS086090-01 (K.K.W. overall PI Geoff T. Manley-UCSF), U.S. DOD grant W81XWH-14-2-0176 (Co-POI, K.K.W., overall PI Geoff T. Manley).

Compliance with Ethical Standards

Conflict of Interest

Kevin K.W. Wang is a shareholder with Banyan Biomarkers, Inc., and reports grants from the NIH and the US Department of Defense.

Zhihui Yang, Tian Zhu, Amenda S. Weissman, Emily Jaalouk, Disa S Rathore, Pammela Romo, Yuan Shi, and Amy K. Wagner declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

  1. 1.
    Schubert A, Emory L. Cellular mechanisms of brain injury and cell death. Curr Pharm Des. 2012;18(38):6325–30. doi: 10.2174/138161212803832425.CrossRefPubMedGoogle Scholar
  2. 2.
    Daneshvar DH, Goldstein LE, Kiernan PT, Stein TD, McKee AC. Post-traumatic neurodegeneration and chronic traumatic encephalopathy. Mol Cell Neurosci. 2015;66(Pt B):81–90. doi: 10.1016/j.mcn.2015.03.007.CrossRefPubMedGoogle Scholar
  3. 3.
    Yeoh S, Bell ED, Monson KL. Distribution of blood-brain barrier disruption in primary blast injury. Ann Biomed Eng. 2013;41(10):2206–14. doi: 10.1007/s10439-013-0805-7.CrossRefPubMedGoogle Scholar
  4. 4.
    Andrews AM, Lutton EM, Merkel SF, Razmpour R, Ramirez SH. Mechanical injury induces brain endothelial-derived microvesicle release: implications for cerebral vascular injury during traumatic brain injury. Front Cell Neurosci. 2016;10:43. doi: 10.3389/fncel.2016.00043.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Yan EB, Satgunaseelan L, Paul E, Bye N, Nguyen P, Agyapomaa D, et al. Post-traumatic hypoxia is associated with prolonged cerebral cytokine production, higher serum biomarker levels, and poor outcome in patients with severe traumatic brain injury. J Neurotrauma. 2014;31(7):618–29. doi: 10.1089/neu.2013.3087.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Su E, Bell MJ, Kochanek PM, Wisniewski SR, Bayır H, Clark RS, et al. Increased CSF concentrations of myelin basic protein after TBI in infants and children: absence of significant effect of therapeutic hypothermia. Neurocriti Care. 2012;17(3):401–17. doi: 10.1007/s12028-012-9767-0.CrossRefGoogle Scholar
  7. 7.
    Thelin EP, Jeppsson E, Frostell A, Svensson M, Mondello S, Bellander BM, et al. Utility of neuron-specific enolase in traumatic brain injury; relations to S100B levels, outcome, and extracranial injury severity. Crit Care. 2016;20:285. doi: 10.1186/s13054-016-1450-y.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Mondello S, Kobeissy F, Vestri A, Hayes RL, Kochanek PM, Berger RP. Serum concentrations of ubiquitin C-terminal hydrolase-L1 and glial fibrillary acidic protein after pediatric traumatic brain injury. Sci Rep. 2016;6:28203. doi: 10.1038/srep28203.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Papa L, Brophy GM, Welch RD, Lewis LM, Braga CF, Tan CN, et al. Time course and diagnostic accuracy of glial and neuronal blood biomarkers GFAP and UCH-L1 in a large cohort of trauma patients with and without mild traumatic brain injury. JAMA Neurol. 2016;73(5):551–60. doi: 10.1001/jamaneurol.2016.0039.CrossRefPubMedGoogle Scholar
  10. 10.
    Hajduková L, Sobek O, Prchalová D, Bílková Z, Koudelková M, Lukášková J, Matuchová I. Biomarkers of brain damage: S100B and NSE concentrations in cerebrospinal fluid—a normative study. Biomed Res Int. 2015;2015:379071. doi: 10.1155/2015/379071.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Papa L, Robertson CS, Wang KK, Brophy GM, Hannay HJ, Heaton S, et al. Biomarkers improve clinical outcome predictors of mortality following non-penetrating severe traumatic brain injury. Neurocrit Care. 2015;22(1):52–64. doi: 10.1007/s12028-014-0028-2.CrossRefPubMedGoogle Scholar
  12. 12.
    Takala RS, Posti JP, Runtti H, Newcombe VF, Outtrim J, Katila AJ, et al. Glial fibrillary acidic protein and ubiquitin C-terminal hydrolase-L1 as outcome predictors in traumatic brain injury. World Neurosurg. 2016;87:8–20. doi: 10.1016/j.wneu.2015.10.066.CrossRefPubMedGoogle Scholar
  13. 13.
    Mondello S, Robicsek SA, Gabrielli A, Brophy GM, Papa L, Tepas J, et al. αII-spectrin breakdown products (SBDPs): diagnosis and outcome in severe traumatic brain injury patients. J Neurotrauma. 2010;27(7):1203–13. doi: 10.1089/neu.2010.1278.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Guaraldi F, Grottoli S, Arvat E, Ghigo E. Hypothalamic-pituitary autoimmunity and traumatic brain injury. J Clin Med. 2015;4(5):1025–35. doi: 10.3390/jcm4051025.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Cox AL, Coles AJ, Nortje J, Bradley PG, Chatfield DA, Thompson SJ, et al. An investigation of auto-reactivity after head injury. J Neuroimmunol. 2006;174(1–2):180–6. doi: 10.1016/j.jneuroim.2006.01.007.CrossRefPubMedGoogle Scholar
  16. 16.
    Sorokina EG, Semenova ZB, Granstrem OK, Karaseva OV, Meshcheriakov SV, Reutov VP, et al. S100B protein and autoantibodies to S100B protein in diagnostics of brain damage in craniocerebral trauma in children. Zh Nevrol Psikhiatr Im S S Korsakova. 2010;110(8):30–5.PubMedGoogle Scholar
  17. 17.
    Zhang Z, Zoltewicz JS, Mondello S, Newsom KJ, Yang Z, Yang B, et al. Human traumatic brain injury induces autoantibody response against glial fibrillary acidic protein and its breakdown products. PLoS One. 2014;9(3):e92698. doi: 10.1371/journal.pone.0092698.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Wolburg H, Noell S, Mack A, Wolburg-Buchholz K, Fallier-Becker P. Brain endothelial cells and the glio-vascular complex. Cell Tissue Res. 2009;335(1):75–96. doi: 10.1007/s00441-008-0658-9.
  19. 19.
    Abbott NJ, Rönnbäck L, Hansson E. Astrocyte–endothelial interactions at the blood–brain barrier. Nat Rev Neurosci. 2006;7(1):41–53. doi: 10.1038/nrn1824.CrossRefPubMedGoogle Scholar
  20. 20.
    Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis. 2004;16(1):1–13. doi: 10.1016/j.nbd.2003.12.016.CrossRefPubMedGoogle Scholar
  21. 21.
    Schwarzmaier SM, Kim SW, Trabold R, Plesnila N. Temporal profile of thrombogenesis in the cerebral microcirculation after traumatic brain injury in mice. J Neurotrauma. 2010;27(1):121–30. doi: 10.1089/neu.2009.1114.CrossRefPubMedGoogle Scholar
  22. 22.
    Hay JR, Johnson VE, Young AM, Smith DH, Stewart W. Blood-brain barrier disruption is an early event that may persist for many years after traumatic brain injury in humans. J Neuropathol Exp Neurol. 2015;74(12):1147–57. doi: 10.1097/NEN.0000000000000261.PubMedGoogle Scholar
  23. 23.
    Li W, Watts L, Long J, Zhou W, Shen Q, Jiang Z, et al. Spatiotemporal changes in blood-brain barrier permeability, cerebral blood flow, T2 and diffusion following mild traumatic brain injury. Brain Res. 2016;1646:53–61. doi: 10.1016/j.brainres.2016.05.036.CrossRefPubMedGoogle Scholar
  24. 24.
    Shen Q, Watts LT, Li W, Duong TQ. Magnetic resonance imaging in experimental traumatic brain injury. Methods Mol Biol. 2016;1462:645–58. doi: 10.1007/978-1-4939-3816-2_35.CrossRefPubMedGoogle Scholar
  25. 25.
    Wei XE, Zhang YZ, Li YH, Li MH, Li WB. Dynamics of rabbit brain edema in focal lesion and perilesion area after traumatic brain injury: a MRI study. J Neurotrauma. 2012;29(14):2413–20. doi: 10.1089/neu.2010.1510.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Glushakova OY, Johnson D, Hayes RL. Delayed increases in microvascular pathology after experimental traumatic brain injury are associated with prolonged inflammation, blood-brain barrier disruption, and progressive white matter damage. J Neurotrauma. 2014;31(13):1180–93. doi: 10.1089/neu.2013.3080.CrossRefPubMedGoogle Scholar
  27. 27.
    Saw MM, Chamberlain J, Barr M, Morgan MPG, Burnett JR, Ho KM. Differential disruption of blood–brain barrier in severe traumatic brain injury. Neurocriti Care. 2014;20(2):209–16. doi: 10.1007/s12028-013-9933-z.CrossRefGoogle Scholar
  28. 28.
    Tomkins O, Feintuch A, Benifla M, Cohen A, Friedman A, Shelef I. Blood-brain barrier breakdown following traumatic brain injury: a possible role in posttraumatic epilepsy. Cardiovasc Psychiatry Neurol. 2011;2011:765923. doi: 10.1155/2011/765923.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Winte C, Bell C, Whyte T, Cardinal J, Macfrlane D, Rose S. Blood–brain barrier dysfunction following traumatic brain injury: correlation of Ktrans (DCE-MRI) and SUVR (99mTc-DTPA SPECT) but not serum S100B. Neurol Res. 2015;37(7):599–606. doi: 10.1179/1743132815y.0000000018.CrossRefGoogle Scholar
  30. 30.
    Zhang Z, Mondello S, Kobeissy F, Rubenstein R, Streeter J, Hayes RL, et al. Protein biomarkers for traumatic and ischemic brain injury: from bench to bedside. Transl Stroke Res. 2011;2(4):455–62. doi: 10.1007/s12975-011-0137-6.CrossRefPubMedGoogle Scholar
  31. 31.
    Yang Z, Wang KK. Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to Neurobiomarker. Trends Neurosci. 2015;38(6):364–74. doi: 10.1016/j.tins.2015.04.003.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Martínez-Morillo E, Childs C, García BP, Álvarez Menéndez FV, Romaschin AD, Cervellin G, et al. Neurofilament medium polypeptide (NFM) protein concentration is increased in CSF and serum samples from patients with brain injury. Clin Chem Lab Med. 2015;53(10):1575–84. doi: 10.1515/cclm-2014-0908.CrossRefPubMedGoogle Scholar
  33. 33.
    Kavalci C, Pekdemir M, Durukan P, Ilhan N, Yildiz M, Serhatlioglu S, et al. The value of serum tau protein for the diagnosis of intracranial injury in minor head trauma. Am J Emerg Med. 2007;25(4):391–5. doi: 10.1016/j.ajem.2006.10.008.CrossRefPubMedGoogle Scholar
  34. 34.
    Pelinka LE, Kroepfl A, Leixnering M, Buchinger W, Raabe A, Redl H. GFAP versus S100B in serum after traumatic brain injury: relationship to brain damage and outcome. J Neurotrauma. 2004;21(11):1553–61. doi: 10.1089/neu.2004.21.1553.CrossRefPubMedGoogle Scholar
  35. 35.
    Nylén K, Ost M, Csajbok LZ, Nilsson I, Blennow K, Nellgård B, et al. Increased serum-GFAP in patients with severe traumatic brain injury is related to outcome. J Neurol Sci. 2006;240(1–2):85–91. doi: 10.1016/j.jns.2005.09.007.CrossRefPubMedGoogle Scholar
  36. 36.
    Honda M, Tsuruta R, Kaneko T, Kasaoka S, Yagi T, Todani M, et al. Serum glial fibrillary acidic protein is a highly specific biomarker for traumatic brain injury in humans compared with S-100B and neuron-specific enolase. J Trauma. 2010;69(1):104–9. doi: 10.1097/TA.0b013e3181bbd485.CrossRefPubMedGoogle Scholar
  37. 37.
    Ankeny DP, Guan Z, Popovich PG. B cells produce pathogenic antibodies and impair recovery after spinal cord injury in mice. J Clin Invest. 2009;119(10):2990–9. doi: 10.1172/JCI39780.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Dekaban GA, Thawer S. Pathogenic antibodies are active participants in spinal cord injury. J Clin Invest. 2009;119(10):2881–4. doi: 10.1172/JCI40839.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ulndreaj A, Tzekou A, Mothe AJ, Siddiqui A, Dragas R, Tator C, et al. Characterization of the antibody response after cervical spinal cord injury. J Neurotrauma. 2016. doi: 10.1089/neu.2016.4498.
  40. 40.
    Louveau A, Harris TH, Kipnis J. Revisiting the mechanisms of CNS immune privilege. Trends Immunol. 2015;36(10):569–77. doi: 10.1016/j.it.2015.08.006.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Hedegaard CJ, Chen N, Sellebjerg F, Sørensen PS, Leslie RG, Bendtzen K, et al. Autoantibodies to myelin basic protein (MBP) in healthy individuals and in patients with multiple sclerosis: a role in regulating cytokine responses to MBP. Immunology. 2009;128(1 Suppl):e451–61. doi: 10.1111/j.1365-2567.2008.02999.x.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Thelin EP, Frostell A, Mulder J, Mitsios N, Damberg P, Aski SN, et al. Lesion size is exacerbated in hypoxic rats whereas hypoxia-inducible factor-1 alpha and vascular endothelial growth factor increase in injured normoxic rats: a prospective cohort study of secondary hypoxia in focal traumatic brain injury. Front Neurol. 2016;7:23. doi: 10.3389/fneur.2016.00023.eCollection2016.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Diamond B, Honig G, Mader S, Brimberg L, Volpe BT. Brain-reactive antibodies and disease. Annu Rev Immunol. 2013;31:345–85. doi: 10.1146/annurev-immunol-020711-075041.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Ankeny DP, Lucin KM, Sanders VM, McGaughy VM, Popovich PG. Spinal cord injury triggers systemic autoimmunity: evidence for chronic B lymphocyte activation and lupus-like autoantibody synthesis. J Neurochem. 2006;99(4):1073–87.CrossRefPubMedGoogle Scholar
  45. 45.
    Yokobori S, Zhang Z, Moghieb A, Mondello S, Gajavelli S, Dietrich WD, et al. Acute diagnostic biomarkers for spinal cord injury: review of the literature and preliminary research report. World Neurosurg. 2015;83(5):867–78. doi: 10.1016/j.wneu.2013.03.012.CrossRefPubMedGoogle Scholar
  46. 46.
    Gee JM, Kalil A, Thullbery M, Becker KJ. Induction of immunologic tolerance to myelin basic protein prevents central nervous system autoimmunity and improves outcome after stroke. Stroke. 2008;39(5):1575–82. doi: 10.1161/STROKEAHA.107.501486.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Gruden MA, Davudova TB, Malisauskas M, Zamotin VV, Sewell RD, Voskresenskaya NI, et al. Autoimmune responses to amyloid structures of Abeta (25–35) peptide and human lysozyme in the serum of patients with progressive Alzheimer’s disease. Dement Geriatr Cogn Disord. 2004;18(2):165–71. doi: 10.1159/000079197.CrossRefPubMedGoogle Scholar
  48. 48.
    Mruthinti S, Buccafusco JJ, Hill WD, Waller JL, Jackson TW, Zamrini EY, et al. Autoimmunity in Alzheimer's disease: increased levels of circulating IgGs binding Abeta and RAGE peptides. Neurobiol Aging. 2004;25(8):1023–32. doi: 10.1016/j.neurobiolaging.2003.11.001.CrossRefPubMedGoogle Scholar
  49. 49.
    Tanriverdi F, De Bellis A, Ulutabanca H, Bizzarro A, Sinisi AA, Bellastella G, et al. A five year prospective investigation of anterior pituitary function after traumatic brain injury: is hypopituitarism long-term after head trauma associated with autoimmunity? J Neurotrauma. 2013;30(16):1426–33. doi: 10.1089/neu.2012.2752.CrossRefPubMedGoogle Scholar
  50. 50.
    Tanriverdi F, De Bellis A, Bizzarro A, Sinisi AA, Bellastella G, Pane E, Bellastella A, Unluhizarci K, Selcuklu A, Casanueva FF, Kelestimur F. Antipituitary antibodies after traumatic brain injury: is head trauma-induced pituitary dysfunction associated with autoimmunity? Eur J Endocrinol. 2008;159(1):7–13. doi: 10.1530/EJE-08-0050.CrossRefPubMedGoogle Scholar
  51. 51.
    Tanriverdi F, Ulutabanca H, Unluhizarci K, Selcuklu A, Casanueva FF, Kelestimur F. Three years prospective investigation of anterior pituitary function after traumatic brain injury: a pilot study. Clin Endocrinol. 2008;68(4):573–9. doi: 10.1111/j.1365-2265.2007.03070.x.CrossRefGoogle Scholar
  52. 52.
    Marchi N, Bazarian JJ, Puvenna V, Janigro M, Ghosh C, Zhong J, et al. Consequences of repeated blood-brain barrier disruption in football players. PLoS One. 2013;8(3):e56805. doi: 10.1371/journal.pone.0056805.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Goryunova AV, Bazarnaya NA, Sorokina EG, Semenova NY, Globa OV, Semenova ZB, et al. Glutamate receptor autoantibody concentrations in children with chronic post-traumatic headache. Neurosci Behav Physiol. 2007;37(8):761–4. doi: 10.1007/s11055-007-0079-3.CrossRefPubMedGoogle Scholar
  54. 54.
    Buonora JE, Mousseau M, Jacobowitz DM, Lazarus RC, Yarnell AM, Olsen CH, et al. Autoimmune profiling reveals peroxiredoxin 6 as a candidate traumatic brain injury biomarker. J Neurotrauma. 2015;32(22):1805–14. doi: 10.1089/neu.2014.3736.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Ngankam L, Kazantseva NV. Immunological markers of severity and outcome of traumatic brain injury. Zh Nevrol Psikhiatr Im S S Korsakova. 2011;111(7):61–5.PubMedGoogle Scholar
  56. 56.
    Wang KK, Yang Z, Yue JK, Zhang Z, Winkler EA, Puccio AM, et al. Plasma anti-glial fibrillary acidic protein autoantibody levels during the acute and chronic phases of traumatic brain injury: a transforming research and clinical knowledge in traumatic brain injury pilot study. J Neurotrauma. 2016;33(13):1270–7. doi: 10.1089/neu.2015.3881.CrossRefPubMedGoogle Scholar
  57. 57.
    Weissman JD, Khunteev GA, Heath R, Dambinova SA. NR2 antibodies: risk assessment of transient ischemic attack (TIA)/stroke in patients with history of isolated and multiple cerebrovascular events. J Neurol Sci. 2011;300(1–2):97–102. doi: 10.1016/j.jns.2010.09.023.CrossRefPubMedGoogle Scholar
  58. 58.
    Tanriverdi F, De Bellis A, Battaglia M, Bellastella G, Bizzarro A, Sinisi AA, et al. Investigation of antihypothalamus and antipituitary antibodies in amateur boxers: is chronic repetitive head trauma-induced pituitary dysfunction associated with autoimmunity? Eur J Endocrinol. 2010;162(5):861–7. doi: 10.1530/EJE-09-1024.CrossRefPubMedGoogle Scholar
  59. 59.
    Smith CJ, Bensing S, Burns C, Robinson PJ, Kasperlik-Zaluska AA, Scott RJ, et al. Identification of TPIT and other novel autoantigens in lymphocytic hypophysitis: immunoscreening of a pituitary cDNA library and development of immunoprecipitation assays. Eur J Endocrinol. 2012;166(3):391–8. doi: 10.1530/EJE-11-1015.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Guaraldi F, Caturegli P, Salvatori R. Prevalence of antipituitary antibodies in acromegaly. Pituitary. 2012;15(4):490–4. doi: 10.1007/s11102-011-0355-7.CrossRefPubMedGoogle Scholar
  61. 61.
    Caturegli P. Autoimmune hypophysitis: an underestimated disease in search of its autoantigen (S). J Clin Endocrinol Metab. 2007;92(6):2038–40. doi: 10.1210/jc.2007-0808.CrossRefPubMedGoogle Scholar
  62. 62.
    Pinelis VG, Sorokina EG, Semenova JB, Karaseva OV, Mescheryakov SV, Chernisheva TA, et al. Biomarkers in children with traumatic brain injury. Zh Nevrol Psikhiatr Im S S Korsakova. 2015;115(8):66–72.CrossRefPubMedGoogle Scholar
  63. 63.
    Kalev-Zylinska ML, Symes W, Little KC, Sun P, Wen D, Qiao L, et al. Stroke patients develop antibodies that react with components of N-methyl-D-aspartate receptor subunit 1 in proportion to lesion size. Stroke. 2013;44(8):2212–9. doi: 10.1161/STROKEAHA.113.001235.CrossRefPubMedGoogle Scholar
  64. 64.
    Schwartz M, Raposo C. Protective autoimmunity: a unifying model for the immune network involved in CNS repair. Neuroscientist. 2014;20(4):343–58.CrossRefPubMedGoogle Scholar
  65. 65.
    Walsh JT, Zheng J, Smirnov I, Lorenz U, Tung K, Kipnis J. Regulatory T cells in central nervous system injury: a double-edged sword. J Immunol. 2014;193(10):5013–22. doi: 10.4049/jimmunol.1302401.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Vargas ME, Watanabe J, Singh SJ, Robinson WH, Barres BA. Endogenous antibodies promote rapid myelin clearance and effective axon regeneration after nerve injury. Proc Natl Acad Sci U S A. 2010;107(26):11993–8. doi: 10.1073/pnas.1001948107.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Baumgarth N. The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat Rev Immunol. 2011;11(1):34–46. doi: 10.1038/nri2901.CrossRefPubMedGoogle Scholar
  68. 68.
    Ehrenstein MR, Notley CA. The importance of natural IgM: scavenger, protector and regulator. Nat Rev Immunol. 2010;10(11):778–86. doi: 10.1038/nri2849.CrossRefPubMedGoogle Scholar
  69. 69.
    Wright BR, Warrington AE, Edberg DD, Rodriguez M. Cellular mechanisms of central nervous system repair by natural autoreactive monoclonal antibodies. Arch Neurol. 2009;66(12):1456–9. doi: 10.1001/archneurol.2009.262.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Stein TD, Fedynyshyn JP, Kalil RE. Circulating autoantibodies recognize and bind dying neurons following injury to the brain. J Neuropathol Exp Neurol. 2002;61(12):1100–8.CrossRefPubMedGoogle Scholar
  71. 71.
    Taylor S, Calder CJ, Albon J, Erichsen JT, Boulton ME, Morgan JE. Involvement of the CD200 receptor complex in microglia activation in experimental glaucoma. Exp Eye Res. 2011;92(5):338–43.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Archelos JJ, Hartung HP. Pathogenetic role of autoantibodies in neurological diseases. Trends Neurosci. 2000;23(7):317–27.CrossRefPubMedGoogle Scholar
  73. 73.
    Strait RT, Hicks W, Barasa N, Mahler A, Khodoun M, Köhl J, et al. MHC class I-specific antibody binding to nonhematopoietic cells drives complement activation to induce transfusion-related acute lung injury in mice. J Exp Med. 2011;208(12):2525–44.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Ankeny DP, Popovich PG. B cells and autoantibodies: complex roles in CNS injury. Trends Immunol. 2010;31(9):332–8.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Rich MC, Keene CN, Neher MD, Johnson K, Yu ZX, Ganivet A, et al. Site-targeted complement inhibition by a complement receptor 2-conjugated inhibitor (mTT30) ameliorates post-injury neuropathology in mouse brains. Neurosci Lett. 2016;617:188–94. doi: 10.1016/j.neulet.2016.02.025.CrossRefPubMedGoogle Scholar
  76. 76.
    Ruseva MM, Ramaglia V, Morgan BP, Harris CL. An anticomplement agent that homes to the damaged brain and promotes recovery after traumatic brain injury in mice. Proc Natl Acad Sci U S A. 2015;112(46):14319–24. doi: 10.1073/pnas.1513698112.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Bellander BM, Olafsson IH, Ghatan PH, Bro Skejo HP, Hansson LO, Wanecek M, et al. Secondary insults following traumatic brain injury enhance complement activation in the human brain and release of the tissue damage marker S100B. Acta Neurochir. 2011;153(1):90–100. doi: 10.1007/s00701-010-0737-z.CrossRefPubMedGoogle Scholar
  78. 78.
    Bellander BM, Singhrao SK, Ohlsson M, Mattsson P, Svensson M. Complement activation in the human brain after traumatic head injury. J Neurotrauma. 2001;18(12):1295–311. doi: 10.1089/08977150152725605.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media New York 2017

Authors and Affiliations

  • Zhihui Yang
    • 1
    • 2
    Email author
  • Tian Zhu
    • 1
    • 2
    • 3
  • Amenda S. Weissman
    • 1
    • 2
  • Emily Jaalouk
    • 1
    • 2
  • Disa S Rathore
    • 1
    • 2
  • Pammela Romo
    • 1
    • 2
  • Yuan Shi
    • 3
  • Amy K. Wagner
    • 4
  • Kevin K. W. Wang
    • 1
    • 2
    • 5
    • 6
    • 7
    Email author
  1. 1.Program for Neurotrauma, Neuroproteomics and Biomarkers Research (NNBR), McKnight Brain InstituteUniversity of FloridaGainesvilleUSA
  2. 2.Department of Psychiatry, McKnight Brain InstituteUniversity of FloridaGainesvilleUSA
  3. 3.Department of Pediatrics, Daping hospitalThird Military Medical UniversityChongqingChina
  4. 4.Department of Physical Medicine and Rehabilitation, Safar Center for Resuscitation ResearchUniversity of PittsburghPittsburghUSA
  5. 5.Department of Neuroscience, McKnight Brain InstituteUniversity of FloridaGainesvilleUSA
  6. 6.Department of Physiological SciencesGainesvilleUSA
  7. 7.Department of ChemistryGainesvilleUSA

Personalised recommendations