Chronic Inflammation After TBI and Associated Behavioral Sequelae

  • John P. Skendelas
  • Megan Muccigrosso
  • Daniel S. Eiferman
  • Jonathan P. Godbout
Traumatic Brain Injury Rehabilitation (AK Wagner, Section Editor)
Part of the following topical collections:
  1. Traumatic Brain Injury Rehabilitation


Traumatic brain injury (TBI) is associated with peripheral and central inflammatory processes that contribute to injury pathology and functional recovery. Unfortunately, there are no effective therapies for limiting either the immediate or long-term neurological consequences of TBI. The purpose of this review is to briefly summarize the relevant TBI pathophysiology and current clinical strategies to reduce inflammation, and to discuss the role of ongoing inflammatory processes that may contribute to long-term neuropsychiatric complications associated with TBI.


Traumatic brain injury Chronic neuroinflammation Depression Neurodegenerative disease 



Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Coronado VG, Xu L, Basavaraju SV, McGuire LC, Wald MM, Faul MD, et al. Surveillance for traumatic brain injury-related deaths-United States, 1997–2007. Morb Mortal Weekly Rep Surveill Summ. 2011;60(5):1–32.Google Scholar
  2. 2.
    • Faul M, Xu, L., Wald, MM., Coronado, VG. Traumatic brain injury in the United States: emergency department visits, hospitalizations and deaths 2002–2006. Atlanta, GA: Centers for Disease Control and Prevention; 2010. Overview of the severity of the impact of TBI in the United States. Google Scholar
  3. 3.
    McCrea M, Guskiewicz KM, Marshall SW, Barr W, Randolph C, Cantu RC, et al. Acute effects and recovery time following concussion in collegiate football players: the NCAA concussion study. JAMA. 2003;290(19):2556.CrossRefPubMedGoogle Scholar
  4. 4.
    Lifshitz J, Witgen B, Grady M. Acute cognitive impairment after lateral fluid percussion brain injury recovers by 1 month: evaluation by conditioned fear response. Beh Brain Res. 2007;177(2):347.CrossRefGoogle Scholar
  5. 5.
    Tang Y, Noda Y, Hasegawa T, Nabeshima T. A concussive-like brain injury model in mice (I): impairment in learning and memory. J Neurotrauma. 1997;14(11):851–62.CrossRefPubMedGoogle Scholar
  6. 6.
    Woodcock T, Morganti-Kossmann MC. The role of markers of inflammation in traumatic brain injury. Front Neurol. 2013;4:18.PubMedCentralPubMedGoogle Scholar
  7. 7.
    Holsinger T, Steffens DC, Phillips C, Helms MJ, Havlik RJ, Breitner JC, et al. Head injury in early adulthood and the lifetime risk of depression. Arch Gen Psychiatry. 2002;59(1):17–22.CrossRefPubMedGoogle Scholar
  8. 8.
    Teasdale T, Engberg A. Suicide after traumatic brain injury: a population study. J Neurol Neurosurg Psychiatry. 2001;71(4):436–40.CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    McKee AC, Stern RA, Nowinski CJ, Stein TD, Alvarez VE, Daneshvar DH, et al. The spectrum of disease in chronic traumatic encephalopathy. Brain. 2013;136(Pt 1):43–64.CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Cheng PL, Lin HY, Lee YK, Hsu CY, Lee CC, Su YC. Higher mortality rates among the elderly with mild traumatic brain injury: a nationwide cohort study. Scand J Trauma Resusc Emerg Med. 2014;22:7.CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Chan V, Zagorski B, Parsons D, Colantonio A. Older adults with acquired brain injury: a population based study. BMC Geriatr. 2013;13:97.CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Maas AI, Stocchetti N, Bullock R. Moderate and severe traumatic brain injury in adults. Lancet Neurol. 2008;7(8):728–41.CrossRefPubMedGoogle Scholar
  13. 13.
    Osier N, Carlson SW, DeSana AJ, Dixon CE. Chronic histopathological and behavioral outcomes of experimental traumatic brain injury in adult male animals. J Neurotrauma. 2014;32:1–22.Google Scholar
  14. 14.
    •• Brain Trauma Foundation, American Association of Neurological Surgeons, Congress of Neurological Surgeons. Guidelines for the management of severe traumatic brain injury. J Neurotrauma. 2007;24:Suppl 1:S1–106. Current consensus guidelines for the clinical treatment of TBI. Google Scholar
  15. 15.
    Arrich J, Holzer M, Havel C, Mullner M, Herkner H. Hypothermia for neuroprotection in adults after cardiopulmonary resuscitation. Cochrane Database Syst Rev. 2012;9:CD004128.PubMedGoogle Scholar
  16. 16.
    Peterson K, Carson S, Carney N. Hypothermia treatment for traumatic brain injury: a systematic review and meta-analysis. J Neurotrauma. 2008;25(1):62–71.CrossRefPubMedGoogle Scholar
  17. 17.
    Clifton GL, Miller ER, Choi SC, Levin HS, McCauley S, Smith KR Jr, et al. Lack of effect of induction of hypothermia after acute brain injury. N Engl J Med. 2001;344(8):556–63.CrossRefPubMedGoogle Scholar
  18. 18.
    Harris OA, Colford JM Jr, Good MC, Matz PG. The role of hypothermia in the management of severe brain injury: a meta-analysis. Arch Neurol. 2002;59(7):1077–83.CrossRefPubMedGoogle Scholar
  19. 19.
    Fox JL, Vu EN, Doyle-Waters M, Brubacher JR, Abu-Laban R, Hu Z. Prophylactic hypothermia for traumatic brain injury: a quantitative systematic review. CJEM. 2010;12(4):355–64.PubMedGoogle Scholar
  20. 20.
    • Cooper DJ, Rosenfeld JV, Murray L, Arabi YM, Davies AR, D’Urso P, et al. Decompressive craniectomy in diffuse traumatic brain injury. N Engl J Med. 2011;364(16):1493–502. New Journal of Medicine article detailing that simply lowering intracranial pressure does not improve outcomes after severe TBI. Google Scholar
  21. 21.
    Roberts I, Sydenham E. Barbiturates for acute traumatic brain injury. Cochrane Database Syst Rev. 2012;12:CD000033.PubMedGoogle Scholar
  22. 22.
    Ker K, Blackhall K. Beta-2 receptor antagonists for acute traumatic brain injury. Cochrane Database Syst Rev. 2008;1:CD006686.PubMedGoogle Scholar
  23. 23.
    Roberts I, Yates D, Sandercock P, Farrell B, Wasserberg J, Lomas G, et al. Effect of intravenous corticosteroids on death within 14 days in 10008 adults with clinically significant head injury (MRC CRASH trial): randomised placebo-controlled trial. Lancet. 2004;364(9442):1321–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Alderson P, Roberts I. Corticosteroids for acute traumatic brain injury. Cochrane Database Syst Rev. 2005;1:CD000196.PubMedGoogle Scholar
  25. 25.
    Santarsieri M, Niyonkuru C, McCullough EH, Dobos JA, Dixon CE, Berga SL, et al. Cerebrospinal fluid cortisol and progesterone profiles and outcomes prognostication after severe traumatic brain injury. J Neurotrauma. 2014;31(8):699–712.CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Xiao GM, Wei J, Yan WQ, Wang WM, Lu ZH. Improved outcomes from the administration of progesterone for patients with acute severe traumatic brain injury: a randomized controlled trial. Critical Care. 2008;12(2):R61.CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Ma JP, Huang SQ, Qin S, You C. Progesterone for acute traumatic brain injury. Cochrane Database Syst Rev. 2012;10:CD008409.PubMedGoogle Scholar
  28. 28.
    Skolnick BE, Maas AI, Narayan RK, van der Hoop RG, MacAllister T, Ward JD, et al. A clinical trial of progesterone for severe traumatic brain injury. N Engl J Med. 2014;371(26):2467–76.CrossRefPubMedGoogle Scholar
  29. 29.
    Wright DW, Yeatts SD, Silbergleit R, Palesch YY, Hertzberg VS, Frankel M, et al. Very early administration of progesterone for acute traumatic brain injury. N Engl J Med. 2014;371(26):2457–66.CrossRefPubMedGoogle Scholar
  30. 30.
    Bennett MH, Trytko B, Jonker B. Hyperbaric oxygen therapy for the adjunctive treatment of traumatic brain injury. Cochrane Database Syst Rev. 2012;12:CD004609.PubMedGoogle Scholar
  31. 31.
    McDonagh M, Carson S, Ash J, Russman BS, Stavri PZ, Krages KP, et al. Hyperbaric oxygen therapy for brain injury, cerebral palsy, and stroke. Evidence Rep Technol Assess. 2003;85:1–6.Google Scholar
  32. 32.
    Spiotta AM, Stiefel MF, Gracias VH, Garuffe AM, Kofke WA, Maloney-Wilensky E, et al. Brain tissue oxygen-directed management and outcome in patients with severe traumatic brain injury. J Neurosurg. 2010;113(3):571–80.CrossRefPubMedGoogle Scholar
  33. 33.
    Narotam PK, Morrison JF, Nathoo N. Brain tissue oxygen monitoring in traumatic brain injury and major trauma: outcome analysis of a brain tissue oxygen-directed therapy. J Neurosurg. 2009;111(4):672–82.CrossRefPubMedGoogle Scholar
  34. 34.
    Control NCfIPa. Report to congress on mild traumatic brain injury in the United States: steps to prevent a serious public health problem. Atlanta, GA: Centers for Disease Control and Prevention, 2003.Google Scholar
  35. 35.
    Grossetete M, Phelps J, Arko L, Yonas H, Rosenberg GA. Elevation of matrix metalloproteinases 3 and 9 in cerebrospinal fluid and blood in patients with severe traumatic brain injury. Neurosurgery. 2009;65(4):702–8.CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Hergenroeder GW, Moore AN, McCoy JP Jr, Samsel L, Ward NH 3rd, Clifton GL, et al. Serum IL-6: a candidate biomarker for intracranial pressure elevation following isolated traumatic brain injury. J Neuroinflamm. 2010;7:19.CrossRefGoogle Scholar
  37. 37.
    Wagner AK, Amin KB, Niyonkuru C, Postal BA, McCullough EH, Ozawa H, et al. CSF Bcl-2 and cytochrome C temporal profiles in outcome prediction for adults with severe TBI. J Cereb Blood Flow Metab. 2011;31(9):1886–96.CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Chiaretti A, Genovese O, Riccardi R, Di Rocco C, Di Giuda D, Mariotti P, et al. Intraventricular nerve growth factor infusion: a possible treatment for neurological deficits following hypoxic-ischemic brain injury in infants. Neurol Res. 2005;27(7):741–6.CrossRefPubMedGoogle Scholar
  39. 39.
    Kumar RG, Boles JA, Wagner AK. Chronic inflammation after severe traumatic brain injury: characterization and associations with outcome at 6 and 12 months postinjury. J Head Trauma Rehabil. 2014. doi: 10.1097/HTR.0000000000000067.Google Scholar
  40. 40.
    Juengst SB, Kumar RG, Failla MD, Goyal A, Wagner AK. Acute inflammatory biomarker profiles predict depression risk following moderate to severe traumatic brain injury. J Head Trauma Rehabil. 2014. doi: 10.1097/HTR.0000000000000031.PubMedGoogle Scholar
  41. 41.
    Kumar RG, Diamond ML, Boles JA, Berger RP, Tisherman SA, Kochanek PM, et al. Acute CSF interleukin-6 trajectories after TBI: associations with neuroinflammation, polytrauma, and outcome. Brain Behav Immun. 2015;45:253–62.CrossRefPubMedGoogle Scholar
  42. 42.
    Juengst SB, Kumar RG, Arenth PM, Wagner AK. Exploratory associations with tumor necrosis factor-alpha, disinhibition and suicidal endorsement after traumatic brain injury. Brain Behav Immun. 2014;41:134–43.CrossRefPubMedGoogle Scholar
  43. 43.
    Holmin S, Mathiesen T, Shetye J, Biberfeld P. Intracerebral inflammatory response to experimental brain contusion. Acta Neurochir (Wien). 1995;132(1–3):110–9.CrossRefGoogle Scholar
  44. 44.
    Loane DJ, Kumar A, Stoica BA, Cabatbat R, Faden AI. Progressive neurodegeneration after experimental brain trauma: association with chronic microglial activation. J Neuropathol Exp Neurol. 2014;73(1):14–29.CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Shultz SR, Bao F, Weaver LC, Cain DP, Brown A. Treatment with an anti-CD11d integrin antibody reduces neuroinflammation and improves outcome in a rat model of repeated concussion. J Neuroinflamm. 2013;10:26.CrossRefGoogle Scholar
  46. 46.
    Huang EY, Tsai TH, Kuo TT, Tsai JJ, Tsui PF, Chou YC, et al. Remote effects on the striatal dopamine system after fluid percussion injury. Behav Brain Res. 2014;267:156–72.CrossRefPubMedGoogle Scholar
  47. 47.
    Xiong Y, Mahmood A, Chopp M. Animal models of traumatic brain injury. Nat Rev Neurosci. 2013;14(2):128–42.CrossRefPubMedCentralPubMedGoogle Scholar
  48. 48.
    Lifshitz J, Kelley BJ, Povlishock JT. Perisomatic thalamic axotomy after diffuse traumatic brain injury is associated with atrophy rather than cell death. J Neuropathol Exp Neurol. 2007;66(3):218–29.CrossRefPubMedGoogle Scholar
  49. 49.
    Morales D, Marklund N, Lebold D, Thompson H, Pitkanen A, Maxwell W, et al. Experimental models of traumatic brain injury: do we really need to build a better mousetrap? Neuroscience. 2005;136(4):971.CrossRefPubMedGoogle Scholar
  50. 50.
    Lifshitz J. Fluid percussion injury model. In: Chen J, Xu ZC, Xu X-M, Zhang JH, editors. Animal models of acute neurological injuries. New York: Humana Press; 2009. p. 369.Google Scholar
  51. 51.
    •• Fenn AM, Gensel JC, Huang Y, Popovich PG, Lifshitz J, Godbout JP. Immune activation promotes depression 1 month after diffuse brain injury: a role for primed microglia. Biol Psychiatry. 2014;76(7):575–84. Illustrates possible mechanism (primed microglia) as the mediator of chronic depression after TBI. Google Scholar
  52. 52.
    Gentleman SM, Leclercq PD, Moyes L, Graham DI, Smith C, Griffin WS, et al. Long-term intracerebral inflammatory response after traumatic brain injury. Forensic Sci Int. 2004;146(2–3):97–104.CrossRefPubMedGoogle Scholar
  53. 53.
    Johnson VE, Stewart JE, Begbie FD, Trojanowski JQ, Smith DH, Stewart W. Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain. 2013;136(Pt 1):28–42.CrossRefPubMedCentralPubMedGoogle Scholar
  54. 54.
    Venneti S, Wagner AK, Wang G, Slagel SL, Chen X, Lopresti BJ, et al. The high affinity peripheral benzodiazepine receptor ligand DAA1106 binds specifically to microglia in a rat model of traumatic brain injury: implications for PET imaging. Exp Neurol. 2007;207(1):118–27.CrossRefPubMedCentralPubMedGoogle Scholar
  55. 55.
    Ramlackhansingh AF, Brooks DJ, Greenwood RJ, Bose SK, Turkheimer FE, Kinnunen KM, et al. Inflammation after trauma: microglial activation and traumatic brain injury. Ann Neurol. 2011;70(3):374–83.CrossRefPubMedGoogle Scholar
  56. 56.
    Millis SR, Rosenthal M, Novack TA, Sherer M, Nick TG, Kreutzer JS, et al. Long-term neuropsychological outcome after traumatic brain injury. J Head Trauma Rehabil. 2001;16(4):343–55.CrossRefPubMedGoogle Scholar
  57. 57.
    Ruff RM, Young D, Gautille T, Marshall LF, Barth J, Jane JA, et al. Verbal-learning deficits following severe head-injury—heterogeneity in recovery over 1 Year. J Neurosurg. 1991;75:S50–8.Google Scholar
  58. 58.
    Salmond CH, Menon DK, Chatfield DA, Pickard JD, Sahakian BJ. Changes over time in cognitive and structural profiles of head injury survivors. Neuropsychologia. 2006;44(10):1995–8.CrossRefPubMedGoogle Scholar
  59. 59.
    Himanen L, Portin R, Isoniemi H, Helenius H, Kurki T, Tenovuo O. Longitudinal cognitive changes in traumatic brain injury: a 30-year follow-up study. Neurology. 2006;66(2):187–92.CrossRefPubMedGoogle Scholar
  60. 60.
    Till C, Colella B, Verwegen J, Green RE. Postrecovery cognitive decline in adults with traumatic brain injury. Arch Phys Med Rehabil. 2008;89(12 Suppl):S25–34.CrossRefPubMedGoogle Scholar
  61. 61.
    Brooks WM, Stidley CA, Petropoulos H, Jung RE, Weers DC, Friedman SD, et al. Metabolic and cognitive response to human traumatic brain injury: a quantitative proton magnetic resonance study. J Neurotrauma. 2000;17(8):629–40.CrossRefPubMedGoogle Scholar
  62. 62.
    Kirov II, Tal A, Babb JS, Reaume J, Bushnik T, Ashman TA, et al. Proton MR spectroscopy correlates diffuse axonal abnormalities with post-concussive symptoms in mild traumatic brain injury. J Neurotrauma. 2013;30(13):1200–4.CrossRefPubMedCentralPubMedGoogle Scholar
  63. 63.
    Baratz R, Tweedie D, Rubovitch V, Luo W, Yoon JS, Hoffer BJ, et al. Tumor necrosis factor-alpha synthesis inhibitor, 3,6′-dithiothalidomide, reverses behavioral impairments induced by minimal traumatic brain injury in mice. J Neurochem. 2011;118(6):1032–42.CrossRefPubMedCentralPubMedGoogle Scholar
  64. 64.
    Wei J, Pan X, Pei Z, Wang W, Qiu W, Shi Z, et al. The beta-lactam antibiotic, ceftriaxone, provides neuroprotective potential via anti-excitotoxicity and anti-inflammation response in a rat model of traumatic brain injury. J Trauma Acute Care Surg. 2012;73(3):654–60.CrossRefPubMedGoogle Scholar
  65. 65.
    Fluiter K, Opperhuizen AL, Morgan BP, Baas F, Ramaglia V. Inhibition of the membrane attack complex of the complement system reduces secondary neuroaxonal loss and promotes neurologic recovery after traumatic brain injury in mice. J Immunol. 2014;192(5):2339–48.CrossRefPubMedGoogle Scholar
  66. 66.
    Liu S, Zhang L, Wu Q, Wu Q, Wang T. Chemokine CCL2 induces apoptosis in cortex following traumatic brain injury. J Mol Neurosci. 2013;51(3):1021–9.CrossRefPubMedGoogle Scholar
  67. 67.
    Sauerbeck A, Gao J, Readnower R, Liu M, Pauly JR, Bing G, et al. Pioglitazone attenuates mitochondrial dysfunction, cognitive impairment, cortical tissue loss, and inflammation following traumatic brain injury. Exp Neurol. 2011;227(1):128–35.CrossRefPubMedCentralPubMedGoogle Scholar
  68. 68.
    Piao CS, Loane DJ, Stoica BA, Li S, Hanscom M, Cabatbat R, et al. Combined inhibition of cell death induced by apoptosis inducing factor and caspases provides additive neuroprotection in experimental traumatic brain injury. Neurobiol Dis. 2012;46(3):745–58.CrossRefPubMedCentralPubMedGoogle Scholar
  69. 69.
    Haber M, Abdel Baki SG, Grin’kina NM, Irizarry R, Ershova A, Orsi S, et al. Minocycline plus N-acetylcysteine synergize to modulate inflammation and prevent cognitive and memory deficits in a rat model of mild traumatic brain injury. Exp Neurol. 2013;249:169–77.CrossRefPubMedGoogle Scholar
  70. 70.
    Lopez-Rodriguez AB, Siopi E, Finn DP, Marchand-Leroux C, Garcia-Segura LM, Jafarian-Tehrani M, et al. CB1 and CB2 cannabinoid receptor antagonists prevent minocycline-induced neuroprotection following traumatic brain injury in mice. Cereb Cortex. 2015;25(1):35–45.CrossRefPubMedGoogle Scholar
  71. 71.
    Bao F, Shultz SR, Hepburn JD, Omana V, Weaver LC, Cain DP, et al. A CD11d monoclonal antibody treatment reduces tissue injury and improves neurological outcome after fluid percussion brain injury in rats. J Neurotrauma. 2012;29(14):2375–92.CrossRefPubMedGoogle Scholar
  72. 72.
    Kabadi SV, Stoica BA, Loane DJ, Luo T, Faden AI. CR8, a novel inhibitor of CDK, limits microglial activation, astrocytosis, neuronal loss, and neurologic dysfunction after experimental traumatic brain injury. J Cereb Blood Flow Metabol. 2014;34(3):502–13.CrossRefGoogle Scholar
  73. 73.
    Briones TL, Woods J, Rogozinska M. Decreased neuroinflammation and increased brain energy homeostasis following environmental enrichment after mild traumatic brain injury is associated with improvement in cognitive function. Acta Neuropathol Commun. 2013;1(1):57.CrossRefPubMedCentralPubMedGoogle Scholar
  74. 74.
    McCrea M, Guskiewicz KM, Marshall SW, Barr W, Randolph C, Cantu RC, et al. Acute effects and recovery time following concussion in collegiate football players: the NCAA Concussion Study. JAMA. 2003;290(19):2556–63.CrossRefPubMedGoogle Scholar
  75. 75.
    Jorge R, Robinson R, Arndt S, Starkstein S, Forrester A, Geisler F. Depression following traumatic brain injury: a 1 year longitudinal study. J Affect Disord. 1993;27(4):233.CrossRefPubMedGoogle Scholar
  76. 76.
    Fleminger S. Long-term psychiatric disorders after traumatic brain injury. Eur J Anesth. 2008;25:123–30.CrossRefGoogle Scholar
  77. 77.
    Kreutzer JS, Seel RT, Gourley E. The prevalence and symptom rates of depression after traumatic brain injury: a comprehensive examination. Brain Injury. 2001;15(7):563–76.CrossRefPubMedGoogle Scholar
  78. 78.
    Bombardier CH, Fann JR, Temkin NR, Esselman PC, Barber J, Dikmen SS. Rates of major depressive disorder and clinical outcomes following traumatic brain injury. JAMA. 2010;303(19):1938–45.CrossRefPubMedCentralPubMedGoogle Scholar
  79. 79.
    Jorge R, Robinson R, Moser D, Tateno A, Crespo-Facorro B, Arndt S. Major depression following traumatic brain injury. Arch Gen Psychiatry. 2004;61(1):42–50.CrossRefPubMedGoogle Scholar
  80. 80.
    Hibbard MR, Uysal S, Kepler K, Bogdany J, Silver J. Axis I psychopathology in individuals with traumatic brain injury. J Head Trauma Rehab. 1998;13(4):24–39.CrossRefGoogle Scholar
  81. 81.
    Fann JR, Hart T, Schomer KG. Treatment for depression after traumatic brain injury: a systematic review. J Neurotrauma. 2009;26(12):2383–402.CrossRefPubMedCentralPubMedGoogle Scholar
  82. 82.
    Su SH, Xu W, Li M, Zhang L, Wu YF, Yu F, et al. Elevated C-reactive protein levels may be a predictor of persistent unfavourable symptoms in patients with mild traumatic brain injury: a preliminary study. Brain Behav Immun. 2014;38:111–7.CrossRefPubMedGoogle Scholar
  83. 83.
    Petraglia AL, Plog BA, Dayawansa S, Chen M, Dashnaw ML, Czerniecka K, et al. The spectrum of neurobehavioral sequelae after repetitive mild traumatic brain injury: a novel mouse model of chronic traumatic encephalopathy. J Neurotrauma. 2014;31(13):1211–24.CrossRefPubMedCentralPubMedGoogle Scholar
  84. 84.
    Godbout JP, Moreau M, Lestage J, Chen J, Sparkman NL, O’Connorv J, et al. Aging exacerbates depressive-like behavior in mice in response to activation of the peripheral innate immune system. Neuropsychopharmacology. 2008;33(10):2341–51.CrossRefPubMedCentralPubMedGoogle Scholar
  85. 85.
    Corona AW, Huang Y, O’Connor JC, Dantzer R, Kelley KW, Popovich PG, et al. Fractalkine receptor (CX3CR1) deficiency sensitizes mice to the behavioral changes induced by lipopolysaccharide. J Neuroinflamm. 2010;7:93.CrossRefGoogle Scholar
  86. 86.
    Oz M, Lorke DE, Hasan M, Petroianu GA. Cellular and molecular actions of methylene blue in the nervous system. Med Res Rev. 2011;31(1):93–117.CrossRefPubMedCentralPubMedGoogle Scholar
  87. 87.
    Fenn AM, Skendelas JP, Moussa DN, Muccigrosso MM, Popovich PG, Lifshitz J, et al. Methylene blue attenuates traumatic brain injury-associated neuroinflammation and acute depressive-like behavior in mice. J Neurotrauma. 2014;32(2):127–38.CrossRefPubMedGoogle Scholar
  88. 88.
    Talley Watts L, Long JA, Chemello J, Van Koughnet S, Fernandez A, Huang S, et al. Methylene blue is neuroprotective against mild traumatic brain injury. J Neurotrauma. 2014;31(11):1063–71.CrossRefPubMedGoogle Scholar
  89. 89.
    Norden DM, Muccigrosso MM, Godbout JP. Microglial priming and enhanced reactivity to secondary insult in aging, and traumatic CNS injury, and neurodegenerative disease. Neuropharmacology. 2014. doi: 10.1016/j.neuropharm.2014.10.028.PubMedGoogle Scholar
  90. 90.
    Abbott NJ. Astrocyte-endothelial interactions and blood-brain barrier permeability. J Anat. 2002;200(6):629–38.CrossRefPubMedCentralPubMedGoogle Scholar
  91. 91.
    Bailes JE, Petraglia AL, Omalu BI, Nauman E, Talavage T. Role of subconcussion in repetitive mild traumatic brain injury. J Neurosurg. 2013;119(5):1235–45.CrossRefPubMedGoogle Scholar
  92. 92.
    Coughlin JM, Wang Y, Munro CA, Ma S, Yue C, Chen S, et al. Neuroinflammation and brain atrophy in former NFL players: an in vivo multimodal imaging pilot study. Neurobiol Dis. 2015;74:58–65.CrossRefPubMedGoogle Scholar
  93. 93.
    LE Goldstein, Fisher AM, Tagge CA, Zhang XL, Velisek L, Sullivan JA, et al. Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Sci Trans Med. 2012;4(134):134ra6.CrossRefGoogle Scholar
  94. 94.
    Smith DH, Johnson VE, Stewart W. Chronic neuropathologies of single and repetitive TBI: substrates of dementia? Nature Rev Neurol. 2013;9(4):211–21.CrossRefGoogle Scholar
  95. 95.
    Goldstein LE, McKee AC, Stanton PK. Considerations for animal models of blast-related traumatic brain injury and chronic traumatic encephalopathy. Alzheimers Res Ther. 2014;6(5):64.CrossRefPubMedCentralPubMedGoogle Scholar
  96. 96.
    Weil ZM, Gaier KR, Karelina K. Injury timing alters metabolic, inflammatory and functional outcomes following repeated mild traumatic brain injury. Neurobiol Dis. 2014;70:108–16.CrossRefPubMedGoogle Scholar
  97. 97.
    Mouzon BC, Bachmeier C, Ferro A, Ojo JO, Crynen G, Acker CM, et al. Chronic neuropathological and neurobehavioral changes in a repetitive mild traumatic brain injury model. Ann Neurol. 2014;75(2):241–54.CrossRefPubMedGoogle Scholar
  98. 98.
    Perez-Polo JR, Rea HC, Johnson KM, Parsley MA, Unabia GC, Xu G, et al. Inflammatory consequences in a rodent model of mild traumatic brain injury. J Neurotrauma. 2013;30(9):727–40.CrossRefPubMedCentralPubMedGoogle Scholar
  99. 99.
    Acosta SA, Tajiri N, de la Pena I, Bastawrous M, Sanberg PR, Kaneko Y, et al. Alpha-synuclein as a pathological link between chronic traumatic brain injury and Parkinson’s disease. J Cell Physiol. 2015;230(5):1024–32.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media New York 2015

Authors and Affiliations

  1. 1.College of MedicineThe Ohio State UniversityColumbusUSA
  2. 2.Department of NeuroscienceThe Ohio State UniversityColumbusUSA
  3. 3.Department of SurgeryThe Ohio State UniversityColumbusUSA
  4. 4.Center for Brain and Spinal Cord RepairThe Ohio State UniversityColumbusUSA
  5. 5.Institute for Behavioral Medicine ResearchThe Ohio State UniversityColumbusUSA

Personalised recommendations