Skip to main content
Log in

What's New in Pediatric Patient Blood Management for Major Surgery?

  • Blood Management (KA Tanaka, Section Editor)
  • Published:
Current Anesthesiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Pediatric patient blood management (PBM) encompasses optimizing red cell mass and the physiologic reserve of anemia, as well as minimizing blood loss. Our goal, built around an illustrative case and the best practices of each tenet of PBM, is to give evidence-based pragmatic suggestions for multidisciplinary pediatric physicians in each phase of care: preoperative, intraoperative, postoperative. Many PBM reviews focus on the intraoperative management of the most severely ill patients, such as cardiac surgery. This review will focus on PBM in the general pediatric surgical population.

Recent Findings

New research was identified on the following topics: global prevalence of anemia, oral and IV iron supplementation, pre-operative transfusion risk scores, transfusion guidelines in pediatric critical care, antifibrinolytics, and viscoelastic testing. Post-operative PBM is an arena ripe for research given the paucity of evidence around the best management of anemia in children after surgery.

Summary

This review discusses the current evidence for PBM in children, as well as many opportunities for research and improvement in this relatively new discipline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Leahy MF, Hofmann A, Towler S, Trentino KM, Burrows SA, Swain SG, et al. Improved outcomes and reduced costs associated with a health-system-wide patient blood management program: a retrospective observational study in four major adult tertiary-care hospitals. Transfusion. 2017;57(6):1347–58. https://doi.org/10.1111/trf.14006.

    Article  PubMed  Google Scholar 

  2. Stevens GA, Paciorek CJ, Flores-Urrutia MC, Borghi E, Namaste S, Wirth JP, et al. National, regional, and global estimates of anaemia by severity in women and children for 2000–19: a pooled analysis of population-representative data. Lancet Glob Health. 2022;10(5):e627–39. https://doi.org/10.1016/S2214-109X(22)00084-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tong S, Vichinsky E. Iron Deficiency: Implications Before Anemia. Pediatr Rev. 2021;42(1):11–20. https://doi.org/10.1542/pir.2018-0134.

    Article  PubMed  Google Scholar 

  4. Andersen CT, Marsden DM, Duggan CP, Liu E, Mozaffarian D, Fawzi WW. Oral iron supplementation and anaemia in children according to schedule, duration, dose and cosupplementation: a systematic review and meta-analysis of 129 randomised trials. BMJ Glob Health. 2023;8(2). https://doi.org/10.1136/bmjgh-2022-010745.

  5. Moretti D, Goede JS, Zeder C, Jiskra M, Chatzinakou V, Tjalsma H, et al. Oral iron supplements increase hepcidin and decrease iron absorption from daily or twice-daily doses in iron-depleted young women. Blood. 2015;126(17):1981–9. https://doi.org/10.1182/blood-2015-05-642223.

    Article  CAS  PubMed  Google Scholar 

  6. Arastu AH, Elstrott BK, Martens KL, Cohen JL, Oakes MH, Rub ZT, et al. Analysis of Adverse Events and Intravenous Iron Infusion Formulations in Adults With and Without Prior Infusion Reactions. JAMA Netw Open. 2022;5(3):e224488. https://doi.org/10.1001/jamanetworkopen.2022.4488.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Crary SE, Hall K, Buchanan GR. Intravenous iron sucrose for children with iron deficiency failing to respond to oral iron therapy. Pediatr Blood Cancer. 2011;56(4):615–9. https://doi.org/10.1002/pbc.22930.

    Article  PubMed  Google Scholar 

  8. Mantadakis E, Tsouvala E, Xanthopoulou V, Chatzimichael A. Intravenous iron sucrose for children with iron deficiency anemia: a single institution study. World J Pediatr. 2016;12(1):109–13. https://doi.org/10.1007/s12519-015-0010-x.

    Article  CAS  PubMed  Google Scholar 

  9. Roganovic J. Parenteral iron therapy in children with iron deficiency anemia. World J Pediatr. 2016;12(1):122. https://doi.org/10.1007/s12519-016-0002-5.

    Article  PubMed  Google Scholar 

  10. Powers JM, Shamoun M, McCavit TL, Adix L, Buchanan GR. Intravenous ferric carboxymaltose in children with iron deficiency anemia who respond poorly to oral iron. J Pediatr. 2017;180:212–6. https://doi.org/10.1016/j.jpeds.2016.09.053.

    Article  CAS  PubMed  Google Scholar 

  11. Boucher AA, Pfeiffer A, Bedel A, Young J, McGann PT. Utilization trends and safety of intravenous iron replacement in pediatric specialty care: A large retrospective cohort study. Pediatr Blood Cancer. 2018;65(6):e26995. https://doi.org/10.1002/pbc.26995.

    Article  PubMed  Google Scholar 

  12. Ozsahin H, Schaeppi M, Bernimoulin M, Allard M, Guidard C, van den Ouweland F. Intravenous ferric carboxymaltose for iron deficiency anemia or iron deficiency without anemia after poor response to oral iron treatment: Benefits and risks in a cohort of 144 children and adolescents. Pediatr Blood Cancer. 2020;67(10):e28614. https://doi.org/10.1002/pbc.28614.

    Article  CAS  PubMed  Google Scholar 

  13. Butragueno-Laiseca L, de la Mata Navazo S, Sanchez Galindo AC, Santiago Lozano MJ. Intravenous iron for critically ill children. Comparison of three dose regimens. Pediatr Blood Cancer. 2024;71(1):e30734. https://doi.org/10.1002/pbc.30734.

    Article  CAS  PubMed  Google Scholar 

  14. Roganovic J. Parenteral iron therapy in children with iron deficiency anemia: A single-institution experience. Pediatr Blood Cancer. 2024;71(4):e30866. https://doi.org/10.1002/pbc.30866.

    Article  CAS  PubMed  Google Scholar 

  15. Alamanda VK, Massengill DL, Rozario N, Moore CG, Scannell B, Brighton B, et al. Blood loss trends and financial implications in adolescent idiopathic scoliosis. Clin Spine Surg. 2018;31(8):E418–21. https://doi.org/10.1097/BSD.0000000000000689.

    Article  PubMed  Google Scholar 

  16. Eisler L, Chihuri S, Lenke LG, Sun LS, Faraoni D, Li G. Development of a preoperative risk score predicting allogeneic red blood cell transfusion in children undergoing spinal fusion. Transfusion. 2022;62(1):100–15. https://doi.org/10.1111/trf.16722.

    Article  CAS  PubMed  Google Scholar 

  17. Shapiro F, Sethna N. Blood loss in pediatric spine surgery. Eur Spine J. 2004;13(Suppl 1):S6-17. https://doi.org/10.1007/s00586-004-0760-y.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fontanals M, O’Leary JD, Zaarour C, Skelton T, Faraoni D. Preoperative anemia increases the risk of red blood cell transfusion and prolonged hospital length of stay in children undergoing spine arthrodesis surgery. Transfusion. 2019;59(2):492–9. https://doi.org/10.1111/trf.15055.

    Article  PubMed  Google Scholar 

  19. Bolton-Maggs PH. Transfusion and hemovigilance in pediatrics. Pediatr Clin North Am. 2013;60(6):1527–40. https://doi.org/10.1016/j.pcl.2013.08.010.

    Article  PubMed  Google Scholar 

  20. Demaret P, Emeriaud G, Hassan NE, Kneyber MCJ, Valentine SL, Bateman ST, et al. Recommendations on RBC transfusions in critically ill children with acute respiratory failure from the pediatric critical care transfusion and anemia expertise initiative. Pediatr Crit Care Med. 2018;19(9S Suppl 1):S114-s20. https://doi.org/10.1097/pcc.0000000000001619.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Goobie SM, Haas T. Perioperative bleeding management in pediatric patients. Curr Opin Anaesthesiol. 2016;29(3):352–8. https://doi.org/10.1097/aco.0000000000000308.

    Article  PubMed  Google Scholar 

  22. Lavoie J. Blood transfusion risks and alternative strategies in pediatric patients. Paediatr Anaesth. 2011;21(1):14–24. https://doi.org/10.1111/j.1460-9592.2010.03470.x.

    Article  PubMed  Google Scholar 

  23. Valentine SL, Bembea MM, Muszynski JA, Cholette JM, Doctor A, Spinella PC, et al. Consensus recommendations for RBC transfusion practice in critically ill children from the pediatric critical care transfusion and anemia expertise initiative. Pediatr Crit Care Med. 2018;19(9):884–98. https://doi.org/10.1097/pcc.0000000000001613.

    Article  PubMed  PubMed Central  Google Scholar 

  24. •• Carson JL, Stanworth SJ, Guyatt G, Valentine S, Dennis J, Bakhtary S, et al. Red Blood Cell Transfusion: 2023 AABB International Guidelines. JAMA. 2023;330(19):1892–902. https://doi.org/10.1001/jama.2023.12914. (Updated AABB RBC transfusion guidelines.)

    Article  PubMed  Google Scholar 

  25. Downey LA, Goobie SM. Perioperative pediatric erythrocyte transfusions: incorporating hemoglobin thresholds and physiologic parameters in decision-making. Anesthesiology. 2022;137(5):604–19. https://doi.org/10.1097/ALN.0000000000004357.

    Article  PubMed  Google Scholar 

  26. Faraoni D, Meier J, New HV, Van der Linden PJ, Hunt BJ. Patient blood management for neonates and children undergoing cardiac surgery: 2019 NATA guidelines. J Cardiothorac Vasc Anesth. 2019;33(12):3249–63. https://doi.org/10.1053/j.jvca.2019.03.036.

    Article  PubMed  Google Scholar 

  27. Kirpalani H, Bell EF, Hintz SR, Tan S, Schmidt B, Chaudhary AS, et al. Higher or lower hemoglobin transfusion thresholds for preterm infants. N Engl J Med. 2020;383(27):2639–51. https://doi.org/10.1056/NEJMoa2020248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Franz AR, Engel C, Bassler D, Rudiger M, Thome UH, Maier RF, et al. Effects of liberal vs restrictive transfusion thresholds on survival and neurocognitive outcomes in extremely low-birth-weight infants: the ETTNO randomized clinical trial. JAMA. 2020;324(6):560–70. https://doi.org/10.1001/jama.2020.10690.

    Article  PubMed  Google Scholar 

  29. •• Nellis ME, Karam O, Valentine SL, Bateman ST, Remy KE, Lacroix J, et al. Executive Summary of Recommendations and Expert Consensus for Plasma and Platelet Transfusion Practice in Critically Ill Children: From the Transfusion and Anemia EXpertise Initiative-Control/Avoidance of Bleeding (TAXI-CAB). Pediatr Crit Care Med. 2022;23(1):34–51. https://doi.org/10.1097/pcc.0000000000002851. (Expert recommendations for platelet and plasma transfusion in critically ill children.)

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bowen RE, Gardner S, Scaduto AA, Eagan M, Beckstead J. Efficacy of intraoperative cell salvage systems in pediatric idiopathic scoliosis patients undergoing posterior spinal fusion with segmental spinal instrumentation. Spine (Phila Pa 1976). 2010;35(2):246–51. https://doi.org/10.1097/BRS.0b013e3181bdf22a.

    Article  PubMed  Google Scholar 

  31. Al-Mohrej OA, Aldakhil SS, Al-Rabiah MA, Al-Rabiah AM. Surgical treatment of adolescent idiopathic scoliosis: Complications. Ann Med Surg. 2020;52:19–23. https://doi.org/10.1016/j.amsu.2020.02.004.

    Article  Google Scholar 

  32. Dupuis C, Michelet D, Hilly J, Diallo T, Vidal C, Delivet H, et al. Predictive factors for homologous transfusion during paediatric scoliosis surgery. Anaesth Crit Care Pain Med. 2015;34(6):327–32. https://doi.org/10.1016/j.accpm.2015.04.003.

    Article  PubMed  Google Scholar 

  33. Faraoni D, DiNardo JA, Goobie SM. Relationship between preoperative anemia and in-hospital mortality in children undergoing noncardiac surgery. Anesth Analg. 2016;123(6):1582–7. https://doi.org/10.1213/ane.0000000000001499.

    Article  PubMed  Google Scholar 

  34. Zhou X, Zhang C, Wang Y, Yu L, Yan M. Preoperative acute normovolemic hemodilution for minimizing allogeneic blood transfusion: a meta-analysis. Anesth Analg. 2015;121(6):1443–55. https://doi.org/10.1213/ANE.0000000000001010.

    Article  PubMed  Google Scholar 

  35. Hasan MS, Choe NC, Chan CYW, Chiu CK, Kwan MK. Effect of intraoperative autologous transfusion techniques on perioperative hemoglobin level in idiopathic scoliosis patients undergoing posterior spinal fusion: A prospective randomized trial. J Orthop Surg (Hong Kong). 2017;25(2):2309499017718951. https://doi.org/10.1177/2309499017718951.

    Article  PubMed  Google Scholar 

  36. Eckert MJ, Wertin TM, Tyner SD, Nelson DW, Izenberg S, Martin MJ. Tranexamic acid administration to pediatric trauma patients in a combat setting: the pediatric trauma and tranexamic acid study (PED-TRAX). J Trauma Acute Care Surg. 2014;77(6):852–8; discussion 8. https://doi.org/10.1097/TA.0000000000000443.

  37. Ockerman A, Vanassche T, Garip M, Vandenbriele C, Engelen MM, Martens J, et al. Tranexamic acid for the prevention and treatment of bleeding in surgery, trauma and bleeding disorders: a narrative review. Thromb J. 2021;19(1):54. https://doi.org/10.1186/s12959-021-00303-9.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wang M, Zheng XF, Jiang LS. Efficacy and safety of antifibrinolytic agents in reducing perioperative blood loss and transfusion requirements in scoliosis surgery: a systematic review and meta-analysis. PLoS ONE. 2015;10(9):e0137886. https://doi.org/10.1371/journal.pone.0137886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Eisler LD, Lenke LG, Sun LS, Li G, Kim M. Do antifibrinolytic agents reduce the risk of blood transfusion in children undergoing spinal fusion?: a propensity score-matched comparison using a national database. Spine. 2020;45(15):1055–61. https://doi.org/10.1097/BRS.0000000000003455.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Goobie SM, Zurakowski D, Glotzbecker MP, McCann ME, Hedequist D, Brustowicz RM, et al. Tranexamic acid is efficacious at decreasing the rate of blood loss in adolescent scoliosis surgery: a randomized placebo-controlled trial. J Bone Joint Surg Am. 2018;100(23):2024–32. https://doi.org/10.2106/JBJS.18.00314.

    Article  PubMed  Google Scholar 

  41. Goobie SM, Faraoni D. Tranexamic acid and perioperative bleeding in children: what do we still need to know? Curr Opin Anaesthesiol. 2019;32(3):343–52. https://doi.org/10.1097/ACO.0000000000000728.

    Article  CAS  PubMed  Google Scholar 

  42. Hasan MS, Yunus SN, Ng CC, Chan CYW, Chiu CK, Kwan MK. Tranexamic acid in pediatric scoliosis surgery: a prospective randomized trial comparing high-dose and low-dose tranexamic acid in adolescent idiopathic scoliosis undergoing posterior spinal fusion surgery. Spine (Phila Pa 1976). 2021;46(22):E1170–7. https://doi.org/10.1097/BRS.0000000000004076.

    Article  PubMed  Google Scholar 

  43. Lam H, Austin T, Nguyen T, Martus J, Schoenecker J. Unexpected higher blood loss associated with higher dose epsilon-aminocaproic acid in pediatric scoliosis surgery. J Pediatr Orthop B. 2019;28(1):40–4. https://doi.org/10.1097/BPB.0000000000000545.

    Article  PubMed  Google Scholar 

  44. Ahlers CG, Lan M, Schoenecker JG, Borst AJ. Blood loss and transfusion in a pediatric scoliosis surgery cohort in the antifibrinolytic era. J Pediatr Hematol Oncol. 2021. https://doi.org/10.1097/MPH.0000000000002351.

    Article  Google Scholar 

  45. Haas T, Fries D, Tanaka KA, Asmis L, Curry NS, Schochl H. Usefulness of standard plasma coagulation tests in the management of perioperative coagulopathic bleeding: is there any evidence? Br J Anaesth. 2015;114(2):217–24. https://doi.org/10.1093/bja/aeu303.

    Article  CAS  PubMed  Google Scholar 

  46. American Society of Anesthesiologists Task Force on Perioperative Blood M. Practice guidelines for perioperative blood management: an updated report by the American Society of Anesthesiologists Task Force on Perioperative Blood Management*. Anesthesiology. 2015;122(2):241–75. https://doi.org/10.1097/ALN.0000000000000463.

  47. El Kady N, Khedr H, Yosry M, El Mekawi S. Perioperative assessment of coagulation in paediatric neurosurgical patients using thromboelastography. Eur J Anaesthesiol. 2009;26(4):293–7. https://doi.org/10.1097/EJA.0b013e32831c8b5f.

    Article  PubMed  Google Scholar 

  48. •• Delaney M, Karam O, Lieberman L, Steffen K, Muszynski JA, Goel R, et al. What Laboratory Tests and Physiologic Triggers Should Guide the Decision to Administer a Platelet or Plasma Transfusion in Critically Ill Children and What Product Attributes Are Optimal to Guide Specific Product Selection? From the Transfusion and Anemia EXpertise Initiative-Control/Avoidance of Bleeding. Pediatr Crit Care Med. 2022;23(13 Suppl 1 1S):e1–13. https://doi.org/10.1097/pcc.0000000000002854. (Expert recommendations for platelet and plasma transfusion in critically ill children.)

    Article  PubMed  PubMed Central  Google Scholar 

  49. Haas T, Faraoni D. Viscoelastic testing in pediatric patients. Transfusion. 2020;60(Suppl 6):S75–85. https://doi.org/10.1111/trf.16076.

    Article  PubMed  Google Scholar 

  50. •• Kietaibl S, Ahmed A, Afshari A, Albaladejo P, Aldecoa C, Barauskas G, et al. Management of severe peri-operative bleeding: Guidelines from the European Society of Anaesthesiology and Intensive Care: Second update 2022. Eur J Anaesthesiol. 2023;40(4):226–304. https://doi.org/10.1097/EJA.0000000000001803. (Updated European guidelines on perioperative bleeding management.)

    Article  PubMed  Google Scholar 

  51. Jonas J, Durila M, Malosek M, Maresova D, Vymazal T, Stulik J, et al. Usefulness of perioperative rotational thrombelastometry during scoliosis surgery in children. J Neurosurg Spine. 2020;32(6):865–70. https://doi.org/10.3171/2019.11.SPINE191137.

    Article  PubMed  Google Scholar 

  52. Haas T, Spielmann N, Restin T, Seifert B, Henze G, Obwegeser J, et al. Higher fibrinogen concentrations for reduction of transfusion requirements during major paediatric surgery: A prospective randomised controlled trial. Br J Anaesth. 2015;115(2):234–43. https://doi.org/10.1093/bja/aev136.

    Article  CAS  PubMed  Google Scholar 

  53. Leeper CM, Gaines BA. Viscoelastic hemostatic assays in the management of the pediatric trauma patient. Semin Pediatr Surg. 2017;26(1):8–13. https://doi.org/10.1053/j.sempedsurg.2017.01.004.

    Article  PubMed  Google Scholar 

  54. George S, Wake E, Sweeny A, Campbell D, Winearls J. Rotational thromboelastometry in children presenting to an Australian major trauma centre: A retrospective cohort study. Emerg Med Australas. 2022;34(4):590–8. https://doi.org/10.1111/1742-6723.13939.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Chen W, Hu A, Ma L, Yu X, Huang Y, Shen J, et al. A randomised controlled trial of fibrinogen concentrate during scoliosis surgery. Anaesthesia. 2020;75(11):1476–81. https://doi.org/10.1111/anae.15124.

    Article  CAS  PubMed  Google Scholar 

  56. Barimani B, Moisan P, Santaguida C, Weber M. therapeutic application of fibrinogen in spine surgery: a review article. Int J Spine Surg. 2021;15(3):549–61. https://doi.org/10.14444/8075.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Crighton GL, Huisman EJ. Pediatric fibrinogen PART II-Overview of indications for fibrinogen use in critically ill children. Front Pediatr. 2021;9:647680. https://doi.org/10.3389/fped.2021.647680.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Nellis ME, Tucci M, Lacroix J, Spinella PC, Haque KD, Stock A, et al. Bleeding assessment scale in critically ill children (BASIC): physician-driven diagnostic criteria for bleeding severity. Crit Care Med. 2019;47(12):1766–72. https://doi.org/10.1097/CCM.0000000000004025.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Munoz M, Acheson AG, Bisbe E, Butcher A, Gomez-Ramirez S, Khalafallah AA, et al. An international consensus statement on the management of postoperative anaemia after major surgical procedures. Anaesthesia. 2018;73(11):1418–31. https://doi.org/10.1111/anae.14358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

T.H. wrote the main manuscript text and prepared the figure. M.C. wrote the main manuscript text.

N.G. wrote the main manuscript text. J.A. wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Thorsten Haas.

Ethics declarations

Conflict of Interest

T.H. is advisory board member for Cerus, Grifols, CSL Behring, Octapharma. M.C. is advisory board member for Cerus, Haemonetics, CSL Behring, Octapharma. N.G. has no conflicts. J.A. is a speaker for Terumo BCT, and advisory board member for CSL Behring.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haas, T., Cushing, M.M., Guzzetta, N.A. et al. What's New in Pediatric Patient Blood Management for Major Surgery?. Curr Anesthesiol Rep (2024). https://doi.org/10.1007/s40140-024-00634-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40140-024-00634-z

Keywords

Navigation