Skip to main content

Advertisement

Log in

Dexmedetomidine in Modern Neuroanesthesia Practice

  • Neuroanesthesia (D Sharma, Section Editor)
  • Published:
Current Anesthesiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this review is to discuss the role of dexmedetomidine in various procedures in clinical neurosciences. It also gives an overview of the various neurosurgical procedures where dexmedetomidine has been used perioperatively.

Recent Findings

Dexmedetomidine possesses many properties that are advantageous for neurosurgical patient including its neuroprotective effect. Its role in the cerebral vasospasm has recently become an area of interest for the researchers. There are number of animal as well as human studies where authors observed an improved neurological outcome following administration of dexmedetomidine. Dexmedetomidine is frequently used in various neurosurgical procedures as adjuvant to anesthetics and also for procedural sedation in neuroradiology suite. Although not approved by the Food and Drug Administration, off label use of dexmedetomidine in children is not uncommon.

Summary

Dexmedetomidine, as an anesthetic adjuvant and as a sedative in neurosurgical patients is commonly practiced and accepted worldwide. Its potential neuroprotective effects and emerging role in cerebral vasospasm merit further investigation for wider clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Cormack JR, Orme RM, Costello TG. The role of alpha2-agonists in neurosurgery. J Clin Neurosci. 2005;12:375–8.

    Article  CAS  PubMed  Google Scholar 

  2. Drummond JC, Dao AV, Roth DM, Cheng CR, Atwater BI, Minokadeh A, et al. Effect of dexmedetomidine on cerebral blood flow velocity, cerebral metabolic rate, and carbon dioxide response in normal humans. Anesthesiology. 2008;108:225–32.

    Article  CAS  PubMed  Google Scholar 

  3. Prielipp RC, Wall MH, Tobin JR, Groban L, Cannon MA, Fahey FH, et al. Dexmedetomidine-induced sedation in volunteers decreases regional and global cerebral blood flow. Anesth Analg. 2002;95:1052–9.

    CAS  PubMed  Google Scholar 

  4. Yu J, Park JY, Kim DH, Koh GH, Jeong W, Kim E, et al. Dexmedetomidine attenuates the increase of ultrasonographic optic nerve sheath diameter as a surrogate for intracranial pressure in patients undergoing robot-assisted laparoscopic prostatectomy: a randomized double-blind controlled trial. Medicine (Baltimore). 2019;98:e16772.

    Article  CAS  Google Scholar 

  5. Ogawa Y, Iwasaki K, Aoki K, Kojima W, Kato J, Ogawa S. Dexmedetomidine weakens dynamic cerebral autoregulation as assessed by transfer function analysis and the thigh cuff method. Anesthesiology. 2008;109:642–50.

    Article  CAS  PubMed  Google Scholar 

  6. Hoffman WE, Kochs E, Werner C, Thomas C, Albrecht RF. Dexmedetomidine improves neurologic outcome from incomplete ischemia in the rat. Reversal by the alpha 2-adrenergic antagonist atipamezole. Anesthesiology. 1991;75:328–32.

    Article  CAS  PubMed  Google Scholar 

  7. Pandharipande PP, Pun BT, Herr DL, Maze M, Girard TD, Miller RR, et al. Effect of sedation with dexmedetomidine vs lorazepam on acute brain dysfunction in mechanically ventilated patients: the MENDS randomized controlled trial. JAMA. 2007;298:2644–53.

    Article  CAS  PubMed  Google Scholar 

  8. Pandharipande PP, Sanders RD, Girard TD, McGrane S, Thompson JL, Shintani AK, et al. Effect of dexmedetomidine versus lorazepam on outcome in patients with sepsis: an a priori-designed analysis of the mends randomized controlled trial. Crit Care. 2010;14:R38.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Keniya VM, Ladi S, Naphade R. Dexmedetomidine attenuates sympathoadrenal response to tracheal intubation and reduces perioperative anaesthetic requirement. Indian J Anaesth. 2011;55:352–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lin YY, He B, Chen J, Wang ZN. Can dexmedetomidine be a safe and efficacious sedative agent in post-cardiac surgery patients? a meta-analysis. Crit Care. 2012;16:R169.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pasin L, Febres D, Testa V, Frati E, Borghi G, Landoni G, et al. Dexmedetomidine vs midazolam as preanesthetic medication in children: a meta-analysis of randomized controlled trials. Paediatr Anaesth. 2015;25:468–76.

    Article  PubMed  Google Scholar 

  12. Mariappan R, Ashokkumar H, Kuppuswamy B. Comparing the effects of oral clonidine premedication with intraoperative dexmedetomidine infusion on anesthetic requirement and recovery from anesthesia in patients undergoing major spine surgery. J Neurosurg Anesthesiol. 2014;26:192–7.

    Article  PubMed  Google Scholar 

  13. Martin E, Ramsay G, Mantz J, Sum-Ping ST. The role of the alpha2-adrenoceptor agonist dexmedetomidine in postsurgical sedation in the intensive care unit. J Intensive Care Med. 2003;18:29–41.

    Article  PubMed  Google Scholar 

  14. Neville DN, Hayes KR, Ivan Y, McDowell ER, Pitetti RD. Double-blind randomized controlled trial of intranasal dexmedetomidine versus intranasal midazolam as anxiolysis prior to pediatric laceration repair in the emergency department. Acad Emerg Med. 2016;23:910–7.

    Article  PubMed  Google Scholar 

  15. Chatrath V, Kumar R, Sachdeva U, Thakur M. Intranasal fentanyl, midazolam and dexmedetomidine as premedication in pediatric patients. Anesth Essay Res. 2018;12:748–53.

    Article  Google Scholar 

  16. Mahmoud M, Radhakrishman R, Gunter J, Sadhasivam S, Schapiro A, Mcauliffe J, et al. Effect of increasing depth of dexmedetomidine anesthesia on upper airway morphology in children. Paediatr Anaesth. 2010;20:506–15.

    Article  PubMed  Google Scholar 

  17. Sulaiman S, Karthekeyan RB, Vakamudi M, Sundar AS, Ravullapalli H, Gandham R. The effects of dexmedetomidine on attenuation of stress response to endotracheal intubation in patients undergoing elective off-pump coronary artery bypass grafting. Ann Card Anaesth. 2012;15:39–43.

    Article  PubMed  Google Scholar 

  18. Kunisawa T, Nagata O, Nagashima M, Mitamura S, Ueno M, Suzuki A, et al. Dexmedetomidine suppresses the decrease in blood pressure during anesthetic induction and blunts the cardiovascular response to tracheal intubation. J Clin Anesth. 2009;21:194–9.

    Article  CAS  PubMed  Google Scholar 

  19. Ren J, Zhang H, Huang L, Liu Y, Liu F, Dong Z. Protective effect of dexmedetomidine in coronary artery bypass grafting surgery. Exp Ther Med. 2013;6:497–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. • Goettel N, Bharadwaj S, Venkatraghavan L, Mehta J, Bernstein M, Manninen PH. Dexmedetomidine vs propofol-remifentanil conscious sedation for awake craniotomy: a prospective randomized controlled trial. Br J Anaesth. 2016;116:811–21. This article by Goettle has shown in a scientifically rigorous way, equivalence between dexmedetomidine based technique and propofol-remifentanil based technique for awake craniotomies.

  21. Elbakry AE, Ibrahim E. Propofol-dexmedetomidine versus propofol-remifentanil conscious sedation for awake craniotomy during epilepsy surgery. Minerva Anestesiol. 2017;83:1248–54.

    Article  PubMed  Google Scholar 

  22. Sheshadri V, Chandramouli BA. Pediatric awake craniotomy for seizure focus resection with dexmedetomidine sedation-a case report. J Clin Anesth. 2016;32:199–202.

    Article  PubMed  Google Scholar 

  23. • Ard J, Doyle W, Bekker A. Awake craniotomy with dexmedetomidine in pediatric patients. J Neurosurg Anesthesiol. 2003;15:263–6. The authors have discussed their experience with the use of dexmedetomidine in children undergoing awake craniotomy.

  24. • Wang L, Shen J, Ge L, Arango MF, Tang X, Moodie J, et al. Dexmedetomidine for craniotomy under general anesthesia: a systematic review and meta-analysis of randomized clinical trials. J Clin Anesth. 2019;54:114–25. In this systematic review, authors included 22 RCTs with craniotomy under general anesthesia comparing dexmedetomidine with placebo. They observed that dexmedetomidine as an adjunct to GA shows small benefits in reduction of pain and PONV.

  25. Soliman RN, Hassan AR, Rashwan AM, Omar AM. Prospective, randomized study to assess the role of dexmedetomidine in patients with supratentorial tumors undergoing craniotomy under general anaesthesia. Middle East J Anaesthesiol. 2011;21:325–34.

    PubMed  Google Scholar 

  26. Turgut N, Turkmen A, Ali A, Altan A. Remifentanil-propofol vs dexmedetomidine-propofol--anesthesia for supratentorial craniotomy. Middle East J Anaesthesiol. 2009;20:63–70.

    PubMed  Google Scholar 

  27. Prathapadas U, Hrishi AP, Appavoo A, Vimala S, Sethuraman M. Effect of low-dose dexmedetomidine on the anesthetic and recovery profile of sevoflurane-based anesthesia in patients presenting for supratentorial neurosurgeries: a randomized double-blind placebo-controlled trial. J Neurosci Rural Pract. 2020;11:267–73.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chakrabarti D, Kamath S, Reddy KRM, Srinivas DB, Manohar N, et al. Effect of adjunctive dexmedetomidine on anesthesia and analgesia requirement and recovery characteristics during Bispectral Index-guided anesthesia for cerebello-pontine angle surgeries: a randomized clinical trial. J Anaesthesiol Clin Pharmacol. 2018;34:496–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Honjo K, Osato T, Omori S, Muraki T, Ishikawa K, Okamura N, et al. Preventing crying after revascularization surgery in pediatric Patients with moyamoya disease:sedation with dexmedetomidine. No Shinkei Geka. 2019;47:525–30.

    PubMed  Google Scholar 

  30. Agrawal P, Ganeriwal V. Dexmedetomidine as anesthetic adjuvant in moyamoya patients for EDAS procedure: Our institutional experience. J Neuroanaesthesiol Crit Care. 2017;04:S88.

    Article  Google Scholar 

  31. Speelman JD, Bosch DA. Resurgence of functional neurosurgery for parkinson’s disease: a historical perspective. Mov Disord. 1998;13:582–8.

    Article  CAS  PubMed  Google Scholar 

  32. Martinez-Simon A, Alegre M, Honorato-Cia C, Nuñez-Cordoba JM, Cacho-Asenjo E, Trocóniz IF, et al. Effect of dexmedetomidine and propofol on basal ganglia activity in parkinson disease: a controlled clinical trial. Anesthesiology. 2017;126:1033–42.

    Article  CAS  PubMed  Google Scholar 

  33. Mathews L, Camalier CR, Kla KM, Mitchell MD, Konrad PE, Neimat JS, et al. The effects of dexmedetomidine on microelectrode recordings of the subthalamic nucleus during deep brain stimulation surgery: a retrospective analysis. Stereotact Funct Neurosurg. 2017;95:40–8.

    Article  PubMed  Google Scholar 

  34. Sassi M, Zekaj E, Grotta A, Pollini A, Pellanda A, Borroni M, et al. Safety in the use of dexmedetomidine (precedex) for deep brain stimulation surgery: our experience in 23 randomized patients. Neuromodulation. 2013;16:401–6.

    Article  PubMed  Google Scholar 

  35. Rozet I, Muangman S, Vavilala MS, Lee LA, Souter MJ, Domino KJ, et al. Clinical experience with dexmedetomidine for implantation of deep brain stimulators in Parkinson's disease. Anesth Analg. 2006;103:1224–8.

    Article  CAS  PubMed  Google Scholar 

  36. Humble SS, Wilson LD, Leath TC, Marshall MD, Sun DZ, Pandharipande PP, et al. ICU sedation with dexmedetomidine after severe traumatic brain injury. Brain Inj. 2016;30:1266–70.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Khallaf M, Thabet AM, Ali M, Sharkawy E, Abdel-rehum S. The effect of dexmedetomidine versus propofol in traumatic brain injury: evaluation of some hemodynamic and intracranial pressure changes. Egypt J Neurosurg. 2019;34:17.

    Article  Google Scholar 

  38. Hao J, Luo JS, Weng Q, He Y, Liu J, Yang MH, et al. Effects of dexmedetomidine on sedation and β-endorphin in traumatic brain injury: a comparative study with propofol. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2013;25:373–6 Chinese.

    CAS  PubMed  Google Scholar 

  39. James ML, Olson DM, Graffagnino C. A pilot study of cerebral and haemodynamic physiological changes during sedation with dexmedetomidine or propofol in patients with acute brain injury. Anaesth Intensive Care. 2012;40:949–57.

    Article  CAS  PubMed  Google Scholar 

  40. Singh S, Chouhan RS, Bindra A, Radhakrishna N. Comparison of effect of dexmedetomidine and lidocaine on intracranial and systemic hemodynamic response to chest physiotherapy and tracheal suctioning in patients with severe traumatic brain injury. J Anesth. 2018;32:518–23.

    Article  PubMed  Google Scholar 

  41. Gao J, Wei L, Xu G, Ren C, Zhang Z, Liu Y. Effects of dexmedetomidine vs sufentanil during percutaneous tracheostomy for traumatic brain injury patients: a prospective randomized controlled trial. Medicine (Baltimore). 2019;98:e17012.

    Article  CAS  Google Scholar 

  42. Kim MH, Lee KY, Bae SJ, Jo M, Cho JS. Intraoperative dexmedetomidine attenuates stress responses in patients undergoing major spine surgery. Minerva Anestesiol. 2019;85:468–77.

    PubMed  Google Scholar 

  43. Tsaousi GG, Pourzitaki C, Aloisio S, Bilotta F. Dexmedetomidine as a sedative and analgesic adjuvant in spine surgery: a systematic review and meta-analysis of randomized controlled trials. Eur J Clin Pharmacol. 2018;74:1377–89.

    Article  CAS  PubMed  Google Scholar 

  44. Kim KH. Safe sedation and hypnosis using dexmedetomidine for minimally invasive spine surgery in a prone position. Korean J Pain. 2014;27:313–20.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Irene R, Julia M, Marcia B, Miriam MT, Jefferson CS, Greg K, et al. Dexmedetomidine Does Not Affect Evoked Potentials During Spine Surgery. Anesth Analg. 2015;121:492–501.

    Article  CAS  Google Scholar 

  46. Li Y, Meng L, Peng Y, Qiao H, Guo L, Han R, et al. Effects of Dexmedetomidine on motor- and somatosensory-evoked potentials in patients with thoracic spinal cord tumor: a randomized controlled trial. BMC Anesthesiol. 2016;16:51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. • Mahmoud M, Sadhasivam S, Salisbury S, Nick TG, Schnell B, Sestokas AK, et al. Susceptibility of transcranial electric motor-evoked potentials to varying targeted blood levels of dexmedetomidine during spine surgery. Anesthesiology. 2010;112:1364–73. This article has shown that dexmedetomidine as an adjunct to propofol based TIVA at clinically relevant target plasma concentrations can significantly attenuate the amplitude of TcMEP.

  48. Kumbar V, Simha J, Gundappa P. Anaesthetic management of a patient with Pompe disease for kyphoscoliosis correction. Indian J Anaesth. 2016;60:349–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. • Gupta N, Rath GP, Prabhakar H, Dash HH. Effect of intraoperative dexmedetomidine on postoperative recovery profile of children undergoing surgery for spinal dysraphism. J Neurosurg Anesthesiol. 2013;25:271–8. This article has discussed intraoperative use of dexmedetomidine in children undergoing spinal surgery and has shown favourable results in terms of favorable recovery profile and reduced postoperative pain.

  50. Moore AD, Anghelescu DL. Emergence delirium in pediatric anesthesia. Pediatr Drugs. 2017;19:11–20.

    Article  Google Scholar 

  51. Sun L, Guo R, Sun L. Dexmedetomidine for preventing sevoflurane-related emergence agitation in children: a meta-analysis of randomized controlled trials. Acta Anaesthesiol Scand. 2014;58:642–50.

    Article  CAS  PubMed  Google Scholar 

  52. Pickard A, Davies P, Birnie K, Beringer R. Systematic review and meta-analysis of the effect of intraoperative α2-adrenergic agonists on postoperative behaviour in children. Br J Anaesth. 2014;112:982–90.

    Article  CAS  PubMed  Google Scholar 

  53. Shi M, Miao S, Gu T, Wang D, Zhang H, Liu J. Dexmedetomidine for the prevention of emergence delirium and postoperative behavioral changes in pediatric patients with sevoflurane anesthesia: a double-blind, randomized trial. Drug Des Devel Ther. 2019;13:897–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tsiotou AG, Malisiova A, Kouptsova E, Mavri M, Anagnostopoulou M, Kalliardou E. Dexmedetomidine for the reduction of emergence delirium in children undergoing tonsillectomy with propofol anesthesia: a double-blind, randomized study. Paediatr Anaesth. 2018;28:632–8.

    Article  PubMed  Google Scholar 

  55. Read MD, Maani CV, Blackwell S. Dexmedetomidine as a rescue therapy for emergence delirium in adults: a case series. A&A Pract. 2017;9:20–3.

    Google Scholar 

  56. Li X, Yang J, Nie XL, Zhang Y, Li XY, Li LH, et al. Impact of dexmedetomidine on the incidence of delirium in elderly patients after cardiac surgery: a randomized controlled trial. PLoS One. 2017;12:e0170757.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Zeng H, Li Z, He J, Fu W. Dexmedetomidine for the prevention of postoperative delirium in elderly patients undergoing noncardiac surgery: a meta-analysis of randomized controlled trials. PLoS One. 2019;14:e0218088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang Y, Zhang R, Meng HY, Wang MX, Du SZ. Efficacy and safety of intranasal dexmedetomidine premedication for children undergoing CT or magnetic resonance imaging: a systematic review and meta-analysis. Zhonghua Er Ke Za Zhi. 2020;58:314–8.

    CAS  PubMed  Google Scholar 

  59. Mason KP, Lubisch NB, Robinson F, Roskos R. Intramuscular dexmedetomidine sedation for pediatric MRI and CT. AJR Am J Roentgenol. 2011;197:720–5.

    Article  PubMed  Google Scholar 

  60. Sriganesh K, Reddy M, Jena S, Mittal M, Umamaheswara Rao GS. A comparative study of dexmedetomidine and propofol as sole sedative agents for patients with aneurysmal subarachnoid hemorrhage undergoing diagnostic cerebral angiography. J Anesth. 2015;29:409–15.

    Article  PubMed  Google Scholar 

  61. Peng K, Li J, Ji FH, Li Z. Dexmedetomidine compared with propofol for pediatric sedation during cerebral angiography. J Res Med Sci. 2014;19:549–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Tang CL, Li J, Zhang ZT, Zhao B, Wang SD, Zhang HM, et al. Neuroprotective effect of bispectral index-guided fast-track anesthesia using sevoflurane combined with dexmedetomidine for intracranial aneurysm embolization. Neural Regen Res. 2018;13:280–8.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Lee HH, Jung YJ, Choi BY, Chang CH. Usefulness of dexmedetomidine during intracerebral aneurysm coiling. J Korean Neurosurg Soc. 2014;55:185–9.

    Article  PubMed  PubMed Central  Google Scholar 

  64. • Song Y, Lim BJ, Kim DH, Ju JW, Han DW. Effect of Dexmedetomidine on Cerebral Vasospasm and Associated Biomarkers in a Rat Subarachnoid Hemorrhage Model. J Neurosurg Anesthesiol. 2019;31:342–9. In this animal study authors have observed that dexmedetomidine reduces the everity of cerebral vasospasm and improves neurological outcome in rats with SAH.

  65. Ayoglu H, Gul S, Hanci V, Bahadir B, Bektas S, Mungan AG, et al. The effects of dexmedetomidine dosage on cerebral vasospasm in a rat subarachnoid haemorrhage model. J Clin Neurosci. 2010;17:770–3.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemanshu Prabhakar.

Ethics declarations

Conflict of Interest

The authors do not have any potential conflicts of interest to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neuroanesthesia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapoor, I., Mahajan, C. & Prabhakar, H. Dexmedetomidine in Modern Neuroanesthesia Practice. Curr Anesthesiol Rep 11, 181–188 (2021). https://doi.org/10.1007/s40140-021-00450-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40140-021-00450-9

Keywords

Navigation