Pediatric Obstructive Sleep Apnea: Neurocognitive Consequences

Abstract

Purpose of Review

This review seeks to highlight the issue of when the best time to operate is given the neurocognitive consequences of pediatric OSA.

Recent Findings

Learning and memory deficits persist after adenotonsillectomy in school age children with the disease at 9-month follow-up, suggesting short-term damage to the hippocampus in young children with OSA.

Summary

Larger trials with younger children with pediatric OSA are currently ongoing to evaluate the impact of adenotonsillectomy on learning and memory recovery.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.

    Kheirandish L, Gozal D. Neurocognitive dysfunction in children with sleep disorders. Dev Sci. 2006;9(4):388–99.

    PubMed  Google Scholar 

  2. 2.

    • Marcus CL, Moore RH, Rosen CL, Giordani B, Garetz SL, Taylor HG, et al. A randomized trial of adenotonsillectomy for childhood sleep apnea. N Engl J Med. 2013;368(25):2366–76 This study demonstrated that in young children with mild OSA, adenotonsillectomy provided no benefit over watchful waiting with regards to executive function.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Lavin JM, Smith C, Harris ZL, Thompson DM. Critical care resources utilized in high-risk adenotonsillectomy patients. Laryngoscope. 2018.

  4. 4.

    De Luca Canto G, et al. Adenotonsillectomy complications: a meta-analysis. Pediatrics. 2015;136(4):702–18.

    PubMed  Google Scholar 

  5. 5.

    • Waters KA, Chawla J, Harris MA, Dakin C, Heussler H, Black R, et al. Rationale for and design of the “POSTA” study: evaluation of neurocognitive outcomes after immediate adenotonsillectomy compared to watchful waiting in preschool children. BMC Pediatr. 2017;17(1):47 This ongoing study seeks to study mild OSA and its effect on neurocognitive outcomes with regards to surgery or watchful waiting.

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Jahn HM, Bergami M. Critical periods regulating the circuit integration of adult-born hippocampal neurons. Cell Tissue Res. 2018;371(1):23–32.

    PubMed  Google Scholar 

  7. 7.

    Lavie L. Obstructive sleep apnoea syndrome--an oxidative stress disorder. Sleep Med Rev. 2003;7(1):35–51.

    PubMed  Google Scholar 

  8. 8.

    Macey PM, Henderson LA, Macey KE, Alger JR, Frysinger RC, Woo MA, et al. Brain morphology associated with obstructive sleep apnea. Am J Respir Crit Care Med. 2002;166(10):1382–7.

    PubMed  Google Scholar 

  9. 9.

    Row BW, Liu R, Xu W, Kheirandish L, Gozal D. Intermittent hypoxia is associated with oxidative stress and spatial learning deficits in the rat. Am J Respir Crit Care Med. 2003;167(11):1548–53.

    PubMed  Google Scholar 

  10. 10.

    Baril AA, Gagnon K, Arbour C, Soucy JP, Montplaisir J, Gagnon JF, et al. Regional cerebral blood flow during wakeful rest in older subjects with mild to severe obstructive sleep apnea. Sleep. 2015;38(9):1439–49.

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Punjabi NM, Beamer BA. C-reactive protein is associated with sleep disordered breathing independent of adiposity. Sleep. 2007;30(1):29–34.

    PubMed  Google Scholar 

  12. 12.

    Li T, Chen Y, Gua C, Wu B. Elevated oxidative stress and inflammation in hypothalamic paraventricular nucleus are associated with sympathetic excitation and hypertension in rats exposed to chronic intermittent hypoxia. Front Physiol. 2018;9:840.

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Lavie L. Oxidative stress in obstructive sleep apnea and intermittent hypoxia--revisited--the bad ugly and good: implications to the heart and brain. Sleep Med Rev. 2015;20:27–45.

    PubMed  Google Scholar 

  14. 14.

    Lovett-Barr MR, Satriotomo I, Muir GD, Wilkerson JER, Hoffman MS, Vinit S, et al. Repetitive intermittent hypoxia induces respiratory and somatic motor recovery after chronic cervical spinal injury. J Neurosci. 2012;32(11):3591–600.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Dore-Duffy P, et al. Chronic mild hypoxia ameliorates chronic inflammatory activity in myelin oligodendrocyte glycoprotein (MOG) peptide induced experimental autoimmune encephalomyelitis (EAE). Adv Exp Med Biol. 2011;701:165–73.

    CAS  PubMed  Google Scholar 

  16. 16.

    Gozal D, Daniel JM, Dohanich GP. Behavioral and anatomical correlates of chronic episodic hypoxia during sleep in the rat. J Neurosci. 2001;21(7):2442–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Zhang J, Veasey S. Making sense of oxidative stress in obstructive sleep apnea: mediator or distracter? Front Neurol. 2012;3:179.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Floyd RA, Hensley K. Oxidative stress in brain aging. Implications for therapeutics of neurodegenerative diseases. Neurobiol Aging. 2002;23(5):795–807.

    CAS  PubMed  Google Scholar 

  19. 19.

    Xu W, Chi L, Row BW, Xu R, Ke Y, Xu B, et al. Increased oxidative stress is associated with chronic intermittent hypoxia-mediated brain cortical neuronal cell apoptosis in a mouse model of sleep apnea. Neuroscience. 2004;126(2):313–23.

    CAS  PubMed  Google Scholar 

  20. 20.

    Beebe DW, Wells CT, Jeffries J, Chini B, Kalra M, Amin R. Neuropsychological effects of pediatric obstructive sleep apnea. J Int Neuropsychol Soc. 2004;10(7):962–75.

    PubMed  Google Scholar 

  21. 21.

    O’Brien LM, Mervis CB, Holbrook CR, Bruner JL, Klaus CJ, Rutherford J, et al. Neurobehavioral implications of habitual snoring in children. Pediatrics. 2004;114(1):44–9.

    PubMed  Google Scholar 

  22. 22.

    O’Brien LM, Mervis CB, Holbrook CR, Bruner JL, Smith NH, McNally N, et al. Neurobehavioral correlates of sleep-disordered breathing in children. J Sleep Res. 2004;13(2):165–72.

    PubMed  Google Scholar 

  23. 23.

    O’Brien LM. The neurocognitive effects of sleep disruption in children and adolescents. Child Adolesc Psychiatr Clin N Am. 2009;18(4):813–23.

    PubMed  Google Scholar 

  24. 24.

    Gozal D. Congenital central hypoventilation syndrome: an update. Pediatr Pulmonol. 1998;26(4):273–82.

    CAS  PubMed  Google Scholar 

  25. 25.

    Urschitz MS, Guenther A, Eggebrecht E, Wolff J, Urschitz-Duprat PM, Schlaud M, et al. Snoring, intermittent hypoxia and academic performance in primary school children. Am J Respir Crit Care Med. 2003;168(4):464–8.

    PubMed  Google Scholar 

  26. 26.

    Hadden SM, Burke CN, Skotcher S, Voepel-Lewis T. Early postoperative outcomes in children after adenotonsillectomy. J Perianesth Nurs. 2011;26(2):89–95.

    PubMed  Google Scholar 

  27. 27.

    da Silva Gusmao Cardoso T, Pompeia S, Miranda MC. Cognitive and behavioral effects of obstructive sleep apnea syndrome in children: a systematic literature review. Sleep Med. 2018;46:46–55.

    PubMed  Google Scholar 

  28. 28.

    Song SA, Tolisano AM, Cable BB, Camacho M. Neurocognitive outcomes after pediatric adenotonsillectomy for obstructive sleep apnea: a systematic review and meta-analysis. Int J Pediatr Otorhinolaryngol. 2016;83:205–10.

    PubMed  Google Scholar 

  29. 29.

    Schmidt-Kastner R. Genomic approach to selective vulnerability of the hippocampus in brain ischemia-hypoxia. Neuroscience. 2015;309:259–79.

    CAS  PubMed  Google Scholar 

  30. 30.

    Taupin P. Adult neural stem cells, neurogenic niches, and cellular therapy. Stem Cell Rev. 2006;2(3):213–9.

    PubMed  Google Scholar 

  31. 31.

    Kempermann G. Why new neurons? Possible functions for adult hippocampal neurogenesis. J Neurosci. 2002;22(3):635–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Li B, Sierra A, Deudero JJ, Semerci F, Laitman A, Kimmel M, et al. Multitype Bellman-Harris branching model provides biological predictors of early stages of adult hippocampal neurogenesis. BMC Syst Biol. 2017;11(Suppl 5):90.

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Toni N, Teng EM, Bushong EA, Aimone JB, Zhao C, Consiglio A, et al. Synapse formation on neurons born in the adult hippocampus. Nat Neurosci. 2007;10(6):727–34.

    CAS  PubMed  Google Scholar 

  34. 34.

    Dayer AG, Ford AA, Cleaver KM, Yassaee M, Cameron HA. Short-term and long-term survival of new neurons in the rat dentate gyrus. J Comp Neurol. 2003;460(4):563–72.

    PubMed  Google Scholar 

  35. 35.

    Kempermann G, Gast D, Kronenberg G, Yamaguchi M, Gage FH. Early determination and long-term persistence of adult-generated new neurons in the hippocampus of mice. Development. 2003;130(2):391–9.

    CAS  PubMed  Google Scholar 

  36. 36.

    Sierra A, Encinas JM, Deudero JJP, Chancey JH, Enikolopov G, Overstreet-Wadiche LS, et al. Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell. 2010;7(4):483–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Boldrini M, Fulmore CA, Tartt AN, Simeon LR, Pavlova I, Poposka V, et al. Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell. 2018;22(4):589–599 e5.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Sorrells SF, Paredes MF, Cebrian-Silla A, Sandoval K, Qi D, Kelley KW, et al. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature. 2018;555(7696):377–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Kesner RP. A behavioral analysis of dentate gyrus function. Prog Brain Res. 2007;163:567–76.

    PubMed  Google Scholar 

  40. 40.

    Deng W, Aimone JB, Gage FH. New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci. 2010;11(5):339–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Sahay A, Scobie KN, Hill AS, O’Carroll CM, Kheirbek MA, Burghardt NS, et al. Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature. 2011;472(7344):466–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Miller BR, Hen R. The current state of the neurogenic theory of depression and anxiety. Curr Opin Neurobiol. 2015;30:51–8.

    CAS  PubMed  Google Scholar 

  43. 43.

    Wu J, Gu M, Chen S, Chen W, Ni K, Xu H, et al. Factors related to pediatric obstructive sleep apnea-hypopnea syndrome in children with attention deficit hyperactivity disorder in different age groups. Medicine (Baltimore). 2017;96(42):e8281.

    Google Scholar 

  44. 44.

    Plessen KJ, Bansal R, Zhu H, Whiteman R, Amat J, Quackenbush GA, et al. Hippocampus and amygdala morphology in attention-deficit/hyperactivity disorder. Arch Gen Psychiatry. 2006;63(7):795–807.

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    • Miano S, Esposito M, Foderaro G, Ramelli GP, Pezzoli V, Manconi M. Sleep-related disorders in children with attention-deficit hyperactivity disorder: preliminary results of a full sleep assessment study. CNS Neurosci Ther. 2016;22(11):906–14 This study sought to create a relationship between sleep disorders and ADHD.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Rubia K. Cognitive neuroscience of attention deficit hyperactivity disorder (ADHD) and its clinical translation. Front Hum Neurosci. 2018;12:100.

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Bin-Hasan S, Katz S, Nugent Z, Nehme J, Lu Z, Khayat A, et al. Prevalence of obstructive sleep apnea among obese toddlers and preschool children. Sleep Breath. 2018;22(2):511–5.

    PubMed  Google Scholar 

  48. 48.

    • Alsubie HS, BaHammam AS. Obstructive sleep apnoea: children are not little adults. Paediatr Respir Rev. 2017;21:72–9 This paper demonstrates that adult and pediatric OSA are two different disorders.

    PubMed  Google Scholar 

  49. 49.

    Nieminen P, Tolonen U, Löppönen H, Löppönen T, Luotonen J, Jokinen K. Snoring children: factors predicting sleep apnea. Acta Otolaryngol Suppl. 1997;529:190–4.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. B. Lee Ligon, Center for Research, Innovation and Scholarship, Department of Pediatrics, BCM, for editorial assistance.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Arvind Chandrakantan.

Ethics declarations

Conflict of Interest

Arvind Chandrakantan and Adam Adler declare they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Pediatric Anesthesia

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chandrakantan, A., Adler, A. Pediatric Obstructive Sleep Apnea: Neurocognitive Consequences. Curr Anesthesiol Rep 9, 110–115 (2019). https://doi.org/10.1007/s40140-019-00331-2

Download citation

Keywords

  • Obstructive sleep apnea
  • Hypoxia
  • ADHD
  • Neurogenesis
  • Hippocampus