Skip to main content

Advertisement

Log in

Propofol (TIVA) Versus Volatile-Based Anesthetics: Is There Any Oncological Benefit?

  • Cancer Anesthesia (B Riedel and V Gottumukkala, Section Editors)
  • Published:
Current Anesthesiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To summarize the most recent available clinical and pre-clinical research data concerning the effects of propofol-based total intravenous anesthesia (TIVA) and volatile anesthesia on oncological outcomes and to discuss the biological basis by which these drugs are purported to exert effects on the cancer cell and on the host.

Recent Findings

Recent retrospective analyses of clinical datasets have generated considerable interest in the hypothesis that the two major classes of general anesthetics in clinical use for oncological surgery—namely inhalational fluranes and intravenous propofol—disparately influence post-operative cancer outcomes. There is also growing pre-clinical data to indicate that these drugs exert distinct effects on cancer cell and immune cell phenotypes.

Summary

The available evidence tends to support the superiority of propofol in terms of the effect on oncological outcomes, but there is a lack of prospective data and a need to be mindful of the complexity and heterogeneity of both the perioperative period and cancer as a disease when interpreting study results and deciding future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Howell SJ, Pandit JJ, Rowbotham DJ, Research Council of the National Institute of Academic A. National Institute of Academic Anaesthesia research priority setting exercise. Br J Anaesth. 2012;108(1):42–52.

    CAS  PubMed  Google Scholar 

  2. Shapiro J, Jersky J, Katzav S, Feldman M, Segal S. Anesthetic drugs accelerate the progression of postoperative metastases of mouse tumors. J Clin Invest. 1981;68(3):678–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lundy J, Lovett EJ 3rd, Hamilton S, Conran P. Halothane, surgery, immunosuppression and artificial pulmonary metastases. Cancer. 1978;41(3):827–30.

    CAS  PubMed  Google Scholar 

  4. Biki B, Mascha E, Moriarty D, Fitzpatrick J, Sessler D, Buggy D. Anesthetic technique for radical prostatectomy surgery affects cancer recurrence: a retrospective analysis. Anesthesiology. 2008;109(2):180–7.

    PubMed  Google Scholar 

  5. Exadaktylos A, Buggy D, Moriarty D, Mascha E, Sessler D. Can anesthetic technique for primary breast cancer surgery affect recurrence or metastasis? Anesthesiology. 2006;105(4):660–4.

    PubMed  Google Scholar 

  6. •• Hiller JG, Perry NJ, Poulogiannis G, Riedel B, Sloan EK. Perioperative events influence cancer recurrence risk after surgery. Nat Rev Clin Oncol. 2018;15(4):205–18. Comprehensive up to date review of the scientific basis for a link between perioperative events and cancer outcomes

    PubMed  Google Scholar 

  7. Pandit JJ, Andrade J, Bogod DG, et al. 5th National Audit Project (NAP5) on accidental awareness during general anaesthesia: protocol, methods, and analysis of data. Br J Anaesth. 2014;113(4):540–8.

    CAS  PubMed  Google Scholar 

  8. Lim A, Braat S, Hiller J, Riedel B. Inhalational versus propofol-based total intravenous anaesthesia: practice patterns and perspectives among Australasian anaesthetists. Anaesth Intensive Care. 2018;46(5):480–7.

    CAS  PubMed  Google Scholar 

  9. Soltanizadeh S, Degett TH, Gogenur I. Outcomes of cancer surgery after inhalational and intravenous anesthesia: a systematic review. J Clin Anesth. 2017;42:19–25.

    PubMed  Google Scholar 

  10. Enlund M, Berglund A, Andreasson K, Cicek C, Enlund A, Bergkvist L. The choice of anaesthetic--sevoflurane or propofol--and outcome from cancer surgery: a retrospective analysis. Ups J Med Sci. 2014;119(3):251–61.

    PubMed  PubMed Central  Google Scholar 

  11. •• Wigmore TJ, Mohammed K, Jhanji S. Long-term survival for patients undergoing volatile versus IV anesthesia for cancer surgery: a retrospective analysis. Anesthesiology. 2016;124(1):69–79 Together with references 10–16 forms the clinical evidence base for the potential impact of inhalational versus propofol-based anesthesia on long-term outcomes following cancer surgery. This is the largest of the retrospective analyses, including 7030 patients undergoing surgery for cancer over a 3-year period.

    CAS  PubMed  Google Scholar 

  12. Lee JH, Kang SH, Kim Y, Kim HA, Kim BS. Effects of propofol-based total intravenous anesthesia on recurrence and overall survival in patients after modified radical mastectomy: a retrospective study. Korean J Anesthesiol. 2016;69(2):126–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim MH, Kim DW, Kim JH, Lee KY, Park S, Yoo YC. Does the type of anesthesia really affect the recurrence-free survival after breast cancer surgery? Oncotarget. 2017;8(52):90477–87.

    PubMed  PubMed Central  Google Scholar 

  14. Jun IJ, Jo JY, Kim JI, et al. Impact of anesthetic agents on overall and recurrence-free survival in patients undergoing esophageal cancer surgery: A retrospective observational study. Sci Rep. 2017;7(1):14020.

    PubMed  PubMed Central  Google Scholar 

  15. Zheng X, Wang Y, Dong L, et al. Effects of propofol-based total intravenous anesthesia on gastric cancer: a retrospective study. Onco Targets Ther. 2018;11:1141–8.

    PubMed  PubMed Central  Google Scholar 

  16. Oh TK, Kim K, Jheon S, et al. Long-term oncologic outcomes for patients undergoing volatile versus intravenous anesthesia for non-small cell lung Cancer surgery: a retrospective propensity matching analysis. Cancer Control. 2018;25(1):1073274818775360.

    PubMed  PubMed Central  Google Scholar 

  17. Melamed R, Bar-Yosef S, Shakhar G, Shakhar K, Ben-Eliyahu S. Suppression of natural killer cell activity and promotion of tumor metastasis by ketamine, thiopental, and halothane, but not by propofol: mediating mechanisms and prophylactic measures. Anesth Analg. 2003;97(5):1331–9.

    CAS  PubMed  Google Scholar 

  18. •• Krall JA, Reinhardt F, Mercury OA, et al. The systemic response to surgery triggers the outgrowth of distant immune-controlled tumors in mouse models of dormancy. Sci Transl Med. 2018;10(436) An experimental model that defines the means by which the inflammatory wound-healing response triggers outgrowth of anatomically distant tumors that were previously held in equilibrium. Also demonstrates a therapeutic role for NSAIDs in preventing this.

  19. Lambert AW, Pattabiraman DR, Weinberg RA. Emerging biological principles of metastasis. Cell. 2017;168(4):670–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Friedl P, Alexander S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell. 2011;147(5):992–1009.

    CAS  PubMed  Google Scholar 

  21. Tavare AN, Perry NJ, Benzonana LL, Takata M, Ma D. Cancer recurrence after surgery: direct and indirect effects of anesthetic agents. Int J Cancer. 2012;130(6):1237–50.

    CAS  PubMed  Google Scholar 

  22. • Benzonana LL, Perry NJ, Watts HR, et al. Isoflurane, a commonly used volatile anesthetic, enhances renal cancer growth and malignant potential via the hypoxia-inducible factor cellular signaling pathway in vitro. Anesthesiology. 2013;119(3):593–605 The first study to implicate inhalational anesthetic upregulation of HIFs and associated signaling pathways with enhanced hallmarks of malignancy in vitro.

    CAS  PubMed  Google Scholar 

  23. Majmundar AJ, Wong WJ, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell. 2010;40(2):294–309.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012;148(3):399–408.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3(10):721–32.

    CAS  PubMed  Google Scholar 

  26. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    CAS  PubMed  Google Scholar 

  27. Schindl M, Schoppmann SF, Samonigg H, et al. Overexpression of hypoxia-inducible factor 1alpha is associated with an unfavorable prognosis in lymph node-positive breast cancer. Clin Cancer Res. 2002;8(6):1831–7.

    CAS  PubMed  Google Scholar 

  28. Rankin E, Giaccia A. The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ. 2008;15(4):678–85.

    CAS  PubMed  Google Scholar 

  29. Rankin EB, Giaccia AJ. Hypoxic control of metastasis. Science. 2016;352(6282):175–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Jaakkola P, Mole DR, Tian YM, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001;292(5516):468–72.

    CAS  PubMed  Google Scholar 

  31. • Huang H, Benzonana LL, Zhao H, et al. Prostate cancer cell malignancy via modulation of HIF-1alpha pathway with isoflurane and propofol alone and in combination. Br J Cancer. 2014;111(7):1338–49 Further evidence of the HIF-mediated effects of an inhalational anesthetic in cancer cells which were rescued by propofol.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Luo X, Zhao H, Hennah L, et al. Impact of isoflurane on malignant capability of ovarian cancer in vitro. Br J Anaesth. 2014.

  33. • Shi QY, Zhang SJ, Liu L, et al. Sevoflurane promotes the expansion of glioma stem cells through activation of hypoxia-inducible factors in vitro. Br J Anaesth. 2014; Connects inhalational anesthetics with enhanced cancer stem cell phenotype.

  34. Zhu M, Li M, Zhou Y, et al. Isoflurane enhances the malignant potential of glioblastoma stem cells by promoting their viability, mobility in vitro and migratory capacity in vivo. Br J Anaesth. 2016;116(6):870–7.

    CAS  PubMed  Google Scholar 

  35. Hermann PC, Huber SL, Herrler T, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007;1(3):313–23.

    CAS  PubMed  Google Scholar 

  36. Samanta D, Gilkes DM, Chaturvedi P, Xiang L, Semenza GL. Hypoxia-inducible factors are required for chemotherapy resistance of breast cancer stem cells. Proc Natl Acad Sci U S A. 2014;111(50):E5429–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lu H, Chen I, Shimoda LA, et al. Chemotherapy-induced Ca(2+) release stimulates breast cancer stem cell enrichment. Cell Rep. 2017;18(8):1946–57.

    CAS  PubMed  Google Scholar 

  38. Zhang H, Lu H, Xiang L, et al. HIF-1 regulates CD47 expression in breast cancer cells to promote evasion of phagocytosis and maintenance of cancer stem cells. Proc Natl Acad Sci U S A. 2015;112(45):E6215–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Qin J, Liu Y, Lu Y, et al. Hypoxia-inducible factor 1 alpha promotes cancer stem cells-like properties in human ovarian cancer cells by upregulating SIRT1 expression. Sci Rep. 2017;7(1):10592.

    PubMed  PubMed Central  Google Scholar 

  40. • Iwasaki M, Zhao H, Jaffer T, et al. Volatile anaesthetics enhance the metastasis related cellular signalling including CXCR2 of ovarian cancer cells. Oncotarget. 2016;7(18):26042–56 Side-by-side comparison of metastasis-associated gene expression changes following exposure to the three commonest inhalational anesthetics in clinical practice today.

    PubMed  PubMed Central  Google Scholar 

  41. Zhang L, Zhang J, Yang L, Dong Y, Zhang Y, Xie Z. Isoflurane and sevoflurane increase interleukin-6 levels through the nuclear factor-kappa B pathway in neuroglioma cells. Br J Anaesth. 2013;110(Suppl 1):i82–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Karin M. Nuclear factor-kappaB in cancer development and progression. Nature. 2006;441(7092):431–6.

    CAS  PubMed  Google Scholar 

  43. Li Z, Ni C, Xia C, et al. Calcineurin/nuclear factor-kappaB signaling mediates isoflurane-induced hippocampal neuroinflammation and subsequent cognitive impairment in aged rats. Mol Med Rep. 2017;15(1):201–9.

    CAS  PubMed  Google Scholar 

  44. Qiao S, Xie H, Wang C, Wu X, Liu H, Liu C. Delayed anesthetic preconditioning protects against myocardial infarction via activation of nuclear factor-kappaB and upregulation of autophagy. J Anesth. 2013;27(2):251–60.

    PubMed  Google Scholar 

  45. Chen CH, Chuang JH, Liu K, Chan JY. Nitric oxide triggers delayed anesthetic preconditioning-induced cardiac protection via activation of nuclear factor-kappaB and upregulation of inducible nitric oxide synthase. Shock. 2008;30(3):241–9.

    CAS  PubMed  Google Scholar 

  46. Xuan YT, Tang XL, Banerjee S, et al. Nuclear factor-kappaB plays an essential role in the late phase of ischemic preconditioning in conscious rabbits. Circ Res. 1999;84(9):1095–109.

    CAS  PubMed  Google Scholar 

  47. Hoesel B, Schmid JA. The complexity of NF-kappaB signaling in inflammation and cancer. Mol Cancer. 2013;12:86.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Deegan C, Murray D, Doran P, Ecimovic P, Moriarty D, Buggy D. Effect of anaesthetic technique on oestrogen receptor-negative breast cancer cell function in vitro. Br J Anaesth. 2009;103(5):685–90.

    CAS  PubMed  Google Scholar 

  49. Ciechanowicz S, Zhao H, Chen Q, et al. Differential effects of sevoflurane on the metastatic potential and chemosensitivity of non-small-cell lung adenocarcinoma and renal cell carcinoma in vitro. Br J Anaesth. 2018;120(2):368–75.

    CAS  PubMed  Google Scholar 

  50. Liang H, Gu M, Yang C, Wang H, Wen X, Zhou Q. Sevoflurane inhibits invasion and migration of lung cancer cells by inactivating the p38 MAPK signaling pathway. J Anesth. 2012;26(3):381–92.

    PubMed  Google Scholar 

  51. Larsen B, Seitz A, Larsen R. Recovery of cognitive function after remifentanil-propofol anesthesia: a comparison with desflurane and sevoflurane anesthesia. Anesth Analg. 2000;90(1):168–74.

    CAS  PubMed  Google Scholar 

  52. Hofer CK, Zollinger A, Buchi S, et al. Patient well-being after general anaesthesia: a prospective, randomized, controlled multi-centre trial comparing intravenous and inhalation anaesthesia. Br J Anaesth. 2003;91(5):631–7.

    CAS  PubMed  Google Scholar 

  53. Lee WK, Kim MS, Kang SW, Kim S, Lee JR. Type of anaesthesia and patient quality of recovery: a randomized trial comparing propofol-remifentanil total i.v. anaesthesia with desflurane anaesthesia. Br J Anaesth. 2015;114(4):663–8.

    CAS  PubMed  Google Scholar 

  54. Sneyd JR, Carr A, Byrom WD, Bilski AJ. A meta-analysis of nausea and vomiting following maintenance of anaesthesia with propofol or inhalational agents. Eur J Anaesthesiol. 1998;15(4):433–45.

    CAS  PubMed  Google Scholar 

  55. Kumar G, Stendall C, Mistry R, Gurusamy K, Walker D. A comparison of total intravenous anaesthesia using propofol with sevoflurane or desflurane in ambulatory surgery: systematic review and meta-analysis. Anaesthesia. 2014;69(10):1138–50.

    CAS  PubMed  Google Scholar 

  56. Mazoit JX, Samii K. Binding of propofol to blood components: implications for pharmacokinetics and for pharmacodynamics. Br J Clin Pharmacol. 1999;47(1):35–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Li R, Liu H, Dilger JP, Lin J. Effect of Propofol on breast Cancer cell, the immune system, and patient outcome. BMC Anesthesiol. 2018;18(1):77.

    PubMed  PubMed Central  Google Scholar 

  58. Mammoto T, Mukai M, Mammoto A, et al. Intravenous anesthetic, propofol inhibits invasion of cancer cells. Cancer Lett. 2002;184(2):165–70.

    CAS  PubMed  Google Scholar 

  59. Li Q, Zhang L, Han Y, Jiang Z, Wang Q. Propofol reduces MMPs expression by inhibiting NF-kappaB activity in human MDA-MB-231 cells. Biomed Pharmacother. 2012;66(1):52–6.

    CAS  PubMed  Google Scholar 

  60. Ecimovic P, Murray D, Doran P, Buggy DJ. Propofol and bupivacaine in breast cancer cell function in vitro - role of the NET1 gene. Anticancer Res. 2014;34(3):1321–31.

    CAS  PubMed  Google Scholar 

  61. Xu W, Zheng J, Bie S, et al. Propofol inhibits Wnt signaling and exerts anticancer activity in glioma cells. Oncol Lett. 2018;16(1):402–8.

    PubMed  PubMed Central  Google Scholar 

  62. Xing SG, Zhang KJ, Qu JH, Ren YD, Luan Q. Propofol induces apoptosis of non-small cell lung cancer cells via ERK1/2-dependent upregulation of PUMA. Eur Rev Med Pharmacol Sci. 2018;22(13):4341–9.

    PubMed  Google Scholar 

  63. Wang P, Chen J, Mu LH, Du QH, Niu XH, Zhang MY. Propofol inhibits invasion and enhances paclitaxel- induced apoptosis in ovarian cancer cells through the suppression of the transcription factor slug. Eur Rev Med Pharmacol Sci. 2013;17(13):1722–9.

    CAS  PubMed  Google Scholar 

  64. Liu Z, Zhang J, Hong G, Quan J, Zhang L, Yu M. Propofol inhibits growth and invasion of pancreatic cancer cells through regulation of the miR-21/Slug signaling pathway. Am J Transl Res. 2016;8(10):4120–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Takabuchi S, Hirota K, Nishi K, et al. The intravenous anesthetic propofol inhibits hypoxia-inducible factor 1 activity in an oxygen tension-dependent manner. FEBS Lett. 2004;577(3):434–8.

    CAS  PubMed  Google Scholar 

  66. Yeh CH, Cho W, So EC, et al. Propofol inhibits lipopolysaccharide-induced lung epithelial cell injury by reducing hypoxia-inducible factor-1alpha expression. Br J Anaesth. 2011;106(4):590–9.

    CAS  PubMed  Google Scholar 

  67. Qian J, Shen S, Chen W, Chen N. Propofol reversed hypoxia-induced docetaxel resistance in prostate cancer cells by preventing epithelial-mesenchymal Transition by inhibiting hypoxia-inducible factor 1alpha. Biomed Res Int. 2018;2018:4174232.

    PubMed  PubMed Central  Google Scholar 

  68. Kasuno K, Takabuchi S, Fukuda K, et al. Nitric oxide induces hypoxia-inducible factor 1 activation that is dependent on MAPK and phosphatidylinositol 3-kinase signaling. J Biol Chem. 2004;279(4):2550–8.

    CAS  PubMed  Google Scholar 

  69. Liu Y, Zhang N, Cao Q, Cui X, Zhou Q, Yang C. The effects of propofol on the growth behavior of hepatoma xenografts in Balb/c mice. Biomed Pharmacother. 2017;90:47–52.

    CAS  PubMed  Google Scholar 

  70. Franks NP, Lieb WR. Molecular and cellular mechanisms of general anaesthesia. Nature. 1994;367(6464):607–14.

    CAS  PubMed  Google Scholar 

  71. Schofield PR, Darlison MG, Fujita N, et al. Sequence and functional expression of the GABA A receptor shows a ligand-gated receptor super-family. Nature. 1987;328(6127):221–7.

    CAS  PubMed  Google Scholar 

  72. Young SZ, Bordey A. GABA’s control of stem and cancer cell proliferation in adult neural and peripheral niches. Physiology (Bethesda). 2009;24:171–85.

    CAS  Google Scholar 

  73. Zhang X, Zhang R, Zheng Y, et al. Expression of gamma-aminobutyric acid receptors on neoplastic growth and prediction of prognosis in non-small cell lung cancer. J Transl Med. 2013;11:102.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Joseph J, Niggemann B, Zaenker KS, Entschladen F. The neurotransmitter gamma-aminobutyric acid is an inhibitory regulator for the migration of SW 480 colon carcinoma cells. Cancer Res. 2002;62(22):6467–9.

    CAS  PubMed  Google Scholar 

  75. Zhang D, Li X, Yao Z, Wei C, Ning N, Li J. GABAergic signaling facilitates breast cancer metastasis by promoting ERK1/2-dependent phosphorylation. Cancer Lett. 2014;348(1–2):100–8.

    CAS  PubMed  Google Scholar 

  76. Neman J, Termini J, Wilczynski S, et al. Human breast cancer metastases to the brain display GABAergic properties in the neural niche. Proc Natl Acad Sci U S A. 2014;111(3):984–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Takehara A, Hosokawa M, Eguchi H, et al. Gamma-aminobutyric acid (GABA) stimulates pancreatic cancer growth through overexpressing GABAA receptor pi subunit. Cancer Res. 2007;67(20):9704–12.

    CAS  PubMed  Google Scholar 

  78. Sizemore GM, Sizemore ST, Seachrist DD, Keri RA. GABA(A) receptor pi (GABRP) stimulates basal-like breast cancer cell migration through activation of extracellular-regulated kinase 1/2 (ERK1/2). J Biol Chem. 2014;289(35):24102–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Babateen O, Jin Z, Bhandage A, et al. Etomidate, propofol and diazepam potentiate GABA-evoked GABAA currents in a cell line derived from human glioblastoma. Eur J Pharmacol. 2015;748:101–7.

    CAS  PubMed  Google Scholar 

  80. Garib V, Lang K, Niggemann B, Zanker KS, Brandt L, Dittmar T. Propofol-induced calcium signalling and actin reorganization within breast carcinoma cells. Eur J Anaesthesiol. 2005;22(8):609–15.

    CAS  PubMed  Google Scholar 

  81. Morvan MG, Lanier LL. NK cells and cancer: you can teach innate cells new tricks. Nat Rev Cancer. 2016;16(1):7–19.

    CAS  PubMed  Google Scholar 

  82. Kim S, Iizuka K, Aguila HL, Weissman IL, Yokoyama WM. In vivo natural killer cell activities revealed by natural killer cell-deficient mice. Proc Natl Acad Sci U S A. 2000;97(6):2731–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Ljunggren HG, Malmberg KJ. Prospects for the use of NK cells in immunotherapy of human cancer. Nat Rev Immunol. 2007;7(5):329–39.

    CAS  PubMed  Google Scholar 

  84. • Stollings LM, Jia LJ, Tang P, Dou H, Lu B, Xu Y. Immune modulation by volatile anesthetics. Anesthesiology. 2016;125(2):399–411A comprehensive review of the modulation of innate and adaptive immunity by inhalational anesthetics and potential mechanisms.

    CAS  PubMed  Google Scholar 

  85. Caligiuri MA. Human natural killer cells. Blood. 2008;112(3):461–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Mitsuhata H, Shimizu R, Yokoyama MM. Suppressive effects of volatile anesthetics on cytokine release in human peripheral blood mononuclear cells. Int J Immunopharmacol. 1995;17(6):529–34.

    CAS  PubMed  Google Scholar 

  87. Miyata T, Kodama T, Honma R, et al. Influence of general anesthesia with isoflurane following propofol-induction on natural killer cell cytotoxic activities of peripheral blood lymphocytes in dogs. J Vet Med Sci. 2013;75(7):917–21.

    CAS  PubMed  Google Scholar 

  88. Buckley A, McQuaid S, Johnson P, Buggy DJ. Effect of anaesthetic technique on the natural killer cell anti-tumour activity of serum from women undergoing breast cancer surgery: a pilot study. Br J Anaesth. 2014;113(Suppl 1):i56–62.

    CAS  PubMed  Google Scholar 

  89. Yuki K, Astrof NS, Bracken C, et al. The volatile anesthetic isoflurane perturbs conformational activation of integrin LFA-1 by binding to the allosteric regulatory cavity. FASEB J. 2008;22(12):4109–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Yuki K, Astrof NS, Bracken C, Soriano SG, Shimaoka M. Sevoflurane binds and allosterically blocks integrin lymphocyte function-associated antigen-1. Anesthesiology. 2010;113(3):600–9.

    CAS  PubMed  Google Scholar 

  91. Yuki K, Bu W, Xi J, Sen M, Shimaoka M, Eckenhoff RG. Isoflurane binds and stabilizes a closed conformation of the leukocyte function-associated antigen-1. FASEB J. 2012;26(11):4408–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. •• Tazawa K, Koutsogiannaki S, Chamberlain M, Yuki K. The effect of different anesthetics on tumor cytotoxicity by natural killer cells. Toxicol Lett. 2017;266:23–31 Demonstrates a molecular mechanism for anesthetic modulation of antitumor NK cell cytotoxicity involving allosteric inhibition of LFA-1 by inhalational but not intravenous anesthetics.

    CAS  PubMed  Google Scholar 

  93. Jung S, Yuki K. Differential effects of volatile anesthetics on leukocyte integrin macrophage-1 antigen. J Immunotoxicol. 2016;13(2):148–56.

    CAS  PubMed  Google Scholar 

  94. Benish M, Bartal I, Goldfarb Y, et al. Perioperative use of beta-blockers and COX-2 inhibitors may improve immune competence and reduce the risk of tumor metastasis. Ann Surg Oncol. 2008;15(7):2042–52.

    PubMed  Google Scholar 

  95. Glasner A, Avraham R, Rosenne E, et al. Improving survival rates in two models of spontaneous postoperative metastasis in mice by combined administration of a beta-adrenergic antagonist and a cyclooxygenase-2 inhibitor. J Immunol. 2010;184(5):2449–57.

    CAS  PubMed  Google Scholar 

  96. Tai LH, de Souza CT, Belanger S, et al. Preventing postoperative metastatic disease by inhibiting surgery-induced dysfunction in natural killer cells. Cancer Res. 2013;73(1):97–107.

    CAS  PubMed  Google Scholar 

  97. Eddy JL, Krukowski K, Janusek L, Mathews HL. Glucocorticoids regulate natural killer cell function epigenetically. Cell Immunol. 2014;290(1):120–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Inada T, Hirota K, Shingu K. Intravenous anesthetic propofol suppresses prostaglandin E2 and cysteinyl leukotriene production and reduces edema formation in arachidonic acid-induced ear inflammation. J Immunotoxicol. 2015;12(3):261–5.

    CAS  PubMed  Google Scholar 

  99. Kambara T, Inada T, Kubo K, Shingu K. Propofol suppresses prostaglandin E(2) production in human peripheral monocytes. Immunopharmacol Immunotoxicol. 2009;31(1):117–26.

    CAS  PubMed  Google Scholar 

  100. Inada T, Yamanouchi Y, Jomura S, et al. Effect of propofol and isoflurane anaesthesia on the immune response to surgery. Anaesthesia. 2004;59(10):954–9.

    CAS  PubMed  Google Scholar 

  101. Ji FH, Wang YL, Yang JP. Effects of propofol anesthesia and sevoflurane anesthesia on the differentiation of human T-helper cells during surgery. Chin Med J (Engl). 2011;124(4):525–9.

    CAS  Google Scholar 

  102. Ren XF, Li WZ, Meng FY, Lin CF. Differential effects of propofol and isoflurane on the activation of T-helper cells in lung cancer patients. Anaesthesia. 2010;65(5):478–82.

    CAS  PubMed  Google Scholar 

  103. Sullivan R, Peppercorn J, Sikora K, et al. Delivering affordable cancer care in high-income countries. Lancet Oncol. 2011;12(10):933–80.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy Wigmore.

Ethics declarations

Conflict of Interest

Nicholas J.S. Perry and Timothy Wigmore declare they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cancer Anesthesia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perry, N.J.S., Wigmore, T. Propofol (TIVA) Versus Volatile-Based Anesthetics: Is There Any Oncological Benefit?. Curr Anesthesiol Rep 8, 399–410 (2018). https://doi.org/10.1007/s40140-018-0296-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40140-018-0296-z

Keywords

Navigation