Skip to main content

Advertisement

Log in

Recent Advances in the Use of Vasopressors and Inotropes in Neurotrauma

  • Anesthesia for Trauma (TE Grissom, Section Editor)
  • Published:
Current Anesthesiology Reports Aims and scope Submit manuscript

Abstract

Purpose of review

This article aims to identify optimum use of inotropes and vasopressors in the context of head and spinal cord injury, both isolated and in polytrauma patients.

Recent findings

There have been relatively few recent publications related to vasopressors and hemodynamic targets in neurotrauma. Most of the literature refers to targeting blood pressures and cerebral perfusion pressures above the recommendations in the latest iterations of the Brain Trauma Foundation guidelines. As a consequence, the rate of complications and side effects are higher at these pressures (e.g. increases in intracranial pressure with higher dose dopamine).

Summary

Neuroanesthesia remains an exacting discipline and there is currently no definitive evidence to suggest an ideal cardiovascular agent, especially in a group that is both heterogeneous in demographics and injury pattern. Attention to multiple smaller details is likely more important than choosing one agent over another to maintain blood pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Holmes CL. Vasoactive drugs in the intensive care unit. Curr Opin Crit Care. 2005;11(5):413–7. https://doi.org/10.1097/01.ccx.0000176696.70013.da.

    Article  PubMed  Google Scholar 

  2. Bangash MN, Kong M-L, Pearse RM. Use of inotropes and vasopressor agents in critically ill patients. Br J Pharmacol. 2012;165(7):2015–33. https://doi.org/10.1111/j.1476-5381.2011.01588.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lim HB, Smith M. Systemic complications after head injury: a clinical review. Anaesthesia. 2007;62(5):474–82. https://doi.org/10.1111/j.1365-2044.2007.04998.x.

    Article  CAS  PubMed  Google Scholar 

  4. Casha S, Christie S. A systematic review of intensive cardiopulmonary management after spinal cord injury. J Neurotrauma. 2011;28(8):1479–95. https://doi.org/10.1089/neu.2009.1156.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Krishnamoorthy V, Rowhani-Rahbar A, Chaikittisilpa N, Gibbons EF, Rivara FP, Temkin NR, et al. Association of early hemodynamic profile and the development of systolic dysfunction following traumatic brain injury. Neurocrit Care Springer US. 2017;26(3):379–87. https://doi.org/10.1007/s12028-016-0335-x.

    Article  Google Scholar 

  6. Ripoll JG, Blackshear JL, Díaz-Gómez JL. Acute cardiac complications in critical brain disease. Neurologic Clinics of NA Elsevier Inc. 2017;35(4):761–83. https://doi.org/10.1016/j.ncl.2017.06.011.

    Article  Google Scholar 

  7. Sperry JL, Minei JP, Frankel HL, West MA, Harbrecht BG, Moore EE, et al. Early use of vasopressors after injury: caution before constriction. J Trauma: Injury, Infection, and Critical Care. 2008;64(1):9–14. https://doi.org/10.1097/TA.0b013e31815dd029.

    Article  CAS  Google Scholar 

  8. Collier B, Dossett L, Mann M, Cotton B, Guillamondegui O, Diaz J, et al. Vasopressin use is associated with death in acute trauma patients with shock. J Crit Care. 2010;25:173. e9–14

    Article  Google Scholar 

  9. Mokri B. The Monro-Kellie hypothesis: applications in CSF volume depletion. Neurology. 2001;56(12):1746–8. https://doi.org/10.1212/WNL.56.12.1746.

    Article  CAS  PubMed  Google Scholar 

  10. D’Angelo MR, Dutton RP. Management of trauma-induced coagulopathy: trends and practices. AANA J. 2010;78(1):35–40.

    PubMed  Google Scholar 

  11. Cotton BA, Gunter OL, Isbell J, Au BK, Robertson AM, Morris JA Jr, et al. Damage control hematology: the impact of a trauma exsanguination protocol on survival and blood product utilization. J Trauma: Injury, Infection, and Critical Care. 2008;64(5):1177–83. https://doi.org/10.1097/TA.0b013e31816c5c80.

    Article  Google Scholar 

  12. GiannoudiM, HarwoodP. Damage control resuscitation: lessons learned. Eur J Trauma Emerg Surg. 2016.

  13. West N, Dawes R. Trauma resuscitation and the damage control approach. Surgery (Oxford). 2015;33(9):430–6. https://doi.org/10.1016/j.mpsur.2015.07.007.

    Article  Google Scholar 

  14. •• Spaite DW, Hu C, Bobrow BJ, Chikani V, Sherrill D, Barnhart B, et al. Mortality and prehospital blood pressure in patients with major traumatic brain injury: implications for the hypotension threshold. JAMA Surg. 2017;152(4):360–8. Recent and through retrospective review of nearly 4000 patients which challenges the previous conception of 90mmHg as the ideal perfusion pressure. https://doi.org/10.1001/jamasurg.2016.4686.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Van Haren RM, Thorson CM, Ogilvie MP, Valle EJ, Guarch GA, Jouria JA, et al. Vasopressin for cerebral perfusion pressure management in patients with severe traumatic brain injury. J Trauma Acute Care Surg. 2013;75(6):1024–30. https://doi.org/10.1097/TA.0b013e3182a99d48.

    Article  CAS  PubMed  Google Scholar 

  16. • BraggeP, SynnotA, MaasAI, MenonDK, CooperDJ, RosenfeldJV, et al. A state-of-the-science overview of randomized controlled trials evaluating acute management of moderate-to-severe traumatic brain injury. J Neurotrauma. Mary Ann Liebert, Inc. 140 Huguenot Street, 3rd Floor New Rochelle, NY 10801 USA; 2016;33:1461–78. Good basic science review of available trials data across many aspects of management of traumatic brain injury.

  17. Manley G, Knudson MM, Morabito D, Damron S, Erickson V, Pitts L. Hypotension, hypoxia, and head injury: frequency, duration, and consequences. Arch Surg. 2001;136(10):1118–23. https://doi.org/10.1001/archsurg.136.10.1118.

    Article  CAS  PubMed  Google Scholar 

  18. Chesnut RM, Marshall LF, Klauber MR, Blunt BA, Baldwin N, Eisenberg HM, et al. The role of secondary brain injury in determining outcome from severe head injury. J Trauma: Injury, Infection, and Critical Care. 1993;34(2):216–22. https://doi.org/10.1097/00005373-199302000-00006.

    Article  CAS  Google Scholar 

  19. Cooper DJ, Rosenfeld JV, Murray L, Arabi YM, Davies AR, D’Urso P, et al. Decompressive craniectomy in diffuse traumatic brain injury. N Engl J Med. 2011;364(16):1493–502. https://doi.org/10.1056/NEJMoa1102077.

    Article  CAS  PubMed  Google Scholar 

  20. Hutchinson PJ, Kolias AG, Timofeev IS, Corteen EA, Czosnyka M, Timothy J, et al. Trial of decompressive craniectomy for traumatic intracranial hypertension. N Engl J Med. 2016;375(12):1119–30. https://doi.org/10.1056/NEJMoa1605215.

    Article  PubMed  Google Scholar 

  21. Khan AD, Elseth AJ, Head B, Rostas J, Dunn JA, Schroeppel TJ, et al. Indicators of survival and favorable functional outcomes after decompressive craniectomy: a multi-institutional retrospective study. Am Surg. 2017;83(8):836–41.

    PubMed  Google Scholar 

  22. Honeybul S, Ho KM, Lind CRP, Gillett GR. The current role of decompressive craniectomy for severe traumatic brain injury. J Clin Neurosci. 2017;43:11–5. https://doi.org/10.1016/j.jocn.2017.04.032.

    Article  CAS  PubMed  Google Scholar 

  23. Kolias AG, Adams H, Timofeev I, Czosnyka M, Corteen EA, Pickard JD, et al. Decompressive craniectomy following traumatic brain injury: developing the evidence base. Br J Neurosurg. 2016;30(2):246–50. https://doi.org/10.3109/02688697.2016.1159655.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Werner C, Engelhard K. Pathophysiology of traumatic brain injury. Br J Anaesth. 2007;99(1):4–9. https://doi.org/10.1093/bja/aem131.

    Article  CAS  PubMed  Google Scholar 

  25. •• CarneyN, TottenAM, O’ReillyC, UllmanJS, HawrylukGWJ, BellMJ, et al. Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery. 2016;1. Practical and research based guidelines for the acute management of neurotrauma which are directly translatable into bedside practice.

  26. Berry C, Ley EJ, Bukur M, Malinoski D, Margulies DR, Mirocha J, et al. Redefining hypotension in traumatic brain injury. Injury. 2012;43(11):1833–7. https://doi.org/10.1016/j.injury.2011.08.014.

    Article  PubMed  Google Scholar 

  27. Butcher I, Maas AIR, Lu J, Marmarou A, Murray GD, Mushkudiani NA, et al. Prognostic value of admission blood pressure in traumatic brain injury: results from the IMPACT study. J Neurotrauma. 2007;24(2):294–302. https://doi.org/10.1089/neu.2006.0032.

    Article  PubMed  Google Scholar 

  28. Brenner M, Stein DM, Hu PF, Aarabi B, Sheth K, Scalea TM. Traditional systolic blood pressure targets underestimate hypotension-induced secondary brain injury. J Trauma Acute Care Surg. 2012;72(5):1135–9. https://doi.org/10.1097/TA.0b013e31824af90b.

    Article  PubMed  Google Scholar 

  29. Biestro A, Barrios E, Baraibar J, Puppo C, Lupano D, Cancela M, et al. Use of vasopressors to raise cerebral perfusion pressure in head injured patients. Acta Neurochir Suppl. 1998;71:5–9.

    CAS  PubMed  Google Scholar 

  30. Ract C, Vigué B. Comparison of the cerebral effects of dopamine and norepinephrine in severely head-injured patients. Intensive Care Med. 2001;27(1):101–6. https://doi.org/10.1007/s001340000754.

    Article  CAS  PubMed  Google Scholar 

  31. Johnston AJ, Steiner LA, Chatfield DA, Coles JP, Hutchinson PJ, Al-Rawi PG, et al. Effect of cerebral perfusion pressure augmentation with dopamine and norepinephrine on global and focal brain oxygenation after traumatic brain injury. Intensive Care Med. 2004;30(5):791–7. https://doi.org/10.1007/s00134-003-2155-7.

    Article  PubMed  Google Scholar 

  32. Steiner LA, Johnston AJ, Czosnyka M, Chatfield DA, Salvador R, Coles JP, et al. Direct comparison of cerebrovascular effects of norepinephrine and dopamine in head-injured patients. Crit Care Med. 2004;32(4):1049–54. https://doi.org/10.1097/01.CCM.0000120054.32845.A6.

    Article  PubMed  Google Scholar 

  33. Friess SH, Bruins B, Kilbaugh TJ, Smith C, Margulies SS. Differing effects when using phenylephrine and norepinephrine to augment cerebral blood flow after traumatic brain injury in the immature brain. J Neurotrauma. 2015;32(4):237–43. https://doi.org/10.1089/neu.2014.3468.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sookplung P, Siriussawakul A, Malakouti A, Sharma D, Wang J, Souter MJ, et al. Vasopressor use and effect on blood pressure after severe adult traumatic brain injury. Neurocrit Care Humana Press Inc. 2011;15(1):46–54. https://doi.org/10.1007/s12028-010-9448-9.

    Article  CAS  Google Scholar 

  35. King BD, Sokoloff L, Wechsler RL. The effects of l-epinephrine and l-norepinephrine upon cerebral circulation and metabolism in man. J Clin Invest. 1952;31(3):273–9. https://doi.org/10.1172/JCI102603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sensenbach W, Madison L, Ochs L. A comparison of the effects of l-nor-epinephrine, synthetic l-epinephrine, and USP epinephrine upon cerebral blood flow and metabolism in man. J Clin Investig Am Soc Clin Investig. 1953;32(3):226–32. https://doi.org/10.1172/JCI102731.

    Article  CAS  Google Scholar 

  37. Myburgh JA. Driving cerebral perfusion pressure with pressors: how, which, when? Crit Care Resuscitation. Australas Med Publ Co. 2005;7:200.

    CAS  Google Scholar 

  38. • Van den Bergh WM. Pharmacotherapy of traumatic brain injury. Neth J Crit Care. 2016;24:1–6. Good overview of the pharmacological options for treating traumatic brain injury.

    Google Scholar 

  39. Durrand JW, Batterham AM, Danjoux GR. Pre-habilitation. I: aggregation of marginal gains. Anaesthesia. 2014;69(5):403–6. https://doi.org/10.1111/anae.12666.

    Article  CAS  PubMed  Google Scholar 

  40. Wilson MH. Monro-Kellie 2.0: the dynamic vascular and venous pathophysiological components of intracranial pressure. J Cereb Blood Flow Metab. 2016;36(8):1338–50. https://doi.org/10.1177/0271678X16648711.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Doran CM, Doran CA, Woolley T, Carter A, Male K, Midwinter MJ, et al. Targeted resuscitation improves coagulation and outcome. J Trauma Acute Care Surg. 2012;72(4):835–43. https://doi.org/10.1097/TA.0b013e318248347b.

    Article  CAS  PubMed  Google Scholar 

  42. DoranCM. Effect of resuscitation strategies on coagulation following haemorrhage and blast exposure - MD Thesis. 2013;1–231.

  43. Nevin DG, Brohi K. Permissive hypotension for active haemorrhage in trauma. Anaesthesia. 2017;72(12):1443–8. https://doi.org/10.1111/anae.14034.

    Article  CAS  PubMed  Google Scholar 

  44. Wiles MD. Blood pressure in trauma resuscitation: ‘pop the clot’ vs. ‘drain the brain’? Anaesthesia. 2017;72(12):1448–55. https://doi.org/10.1111/anae.14042.

    Article  CAS  PubMed  Google Scholar 

  45. SchulteamEsch J, Pfeifer G, Thiemig I, Entzian W. The influence of intravenous anaesthetic agents on primarily increased intracranial pressure. Acta Neurochir. 1978;45(1-2):15–25. https://doi.org/10.1007/BF01774380.

    Article  CAS  Google Scholar 

  46. Lockey DJ, Crewdson K, Davies G, Jenkins B, Klein J, Laird C, et al. AAGBI: safer pre-hospital anaesthesia 2017. Anaesthesia. 2nd ed. 2017;72(3):379–90. https://doi.org/10.1111/anae.13779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schmittner MD, Vajkoczy SL, Horn P, Bertsch T, Quintel M, Vajkoczy P, et al. Effects of fentanyl and S(+)-ketamine on cerebral hemodynamics, gastrointestinal motility, and need of vasopressors in patients with intracranial pathologies: a pilot study. J Neurosurg Anesthesiol. 2007;19(4):257–62. https://doi.org/10.1097/ANA.0b013e31811f3feb.

    Article  PubMed  Google Scholar 

  48. Albanèse J, Arnaud S, Rey M, Thomachot L, Alliez B, Martin C. Ketamine decreases intracranial pressure and electroencephalographic activity in traumatic brain injury patients during propofol sedation. Anesthesiology. 1997;87(6):1328–34. https://doi.org/10.1097/00000542-199712000-00011.

    Article  PubMed  Google Scholar 

  49. Bourgoin A, Albanèse J, Wereszczynski N, Charbit M, Vialet R, Martin C. Safety of sedation with ketamine in severe head injury patients: comparison with sufentanil. Crit Care Med. 2003;31(3):711–7. https://doi.org/10.1097/01.CCM.0000044505.24727.16.

    Article  CAS  PubMed  Google Scholar 

  50. Bourgoin A, Albanèse J, Léone M, Sampol-Manos E, Viviand X, Martin C. Effects of sufentanil or ketamine administered in target-controlled infusion on the cerebral hemodynamics of severely brain-injured patients. Crit Care Med. 2005;33(5):1109–13. https://doi.org/10.1097/01.CCM.0000162491.26292.98.

    Article  CAS  PubMed  Google Scholar 

  51. Bar-Joseph G, Guilburd Y, Tamir A, Guilburd JN. Effectiveness of ketamine in decreasing intracranial pressure in children with intracranial hypertension. J Neurosurg Pediatr. 2009;4(1):40–6. https://doi.org/10.3171/2009.1.PEDS08319.

    Article  PubMed  Google Scholar 

  52. World Health Organization. WHO expert committee on specifications for pharmaceutical preparations [Internet]. World Health Organization; 2016. Available from: http://books.google.co.uk/books?id=qw0LDgAAQBAJ&printsec=frontcover&dq=WHO+Technical+Report+Series+No+996+2016&hl=&cd=1&source=gbs_api

  53. Zeiler FA, Teitelbaum J, West M, Gillman LM. The ketamine effect on ICP in traumatic brain injury. Neurocrit Care. 2014;21(1):163–73. https://doi.org/10.1007/s12028-013-9950-y.

    Article  CAS  PubMed  Google Scholar 

  54. Gantner D, Moore EM, Cooper DJ. Intravenous fluids in traumatic brain injury: what’s the solution? Curr Opin Crit Care. 2014;20(4):385–9. https://doi.org/10.1097/MCC.0000000000000114.

    Article  PubMed  Google Scholar 

  55. Roberts I, Yates D, Sandercock P, Farrell B, Wasserberg J, Lomas G, et al. Effect of intravenous corticosteroids on death within 14 days in 10008 adults with clinically significant head injury (MRC CRASH trial): randomised placebo-controlled trial. Lancet. 2004;364(9442):1321–8. https://doi.org/10.1016/S0140-6736(04)17188-2.

    Article  CAS  PubMed  Google Scholar 

  56. Nacimiento W, Noth J. What, if anything, is spinal shock? Arch Neurol. 1999;56(8):1033–5. https://doi.org/10.1001/archneur.56.8.1033.

    Article  CAS  PubMed  Google Scholar 

  57. SteinDM, KnightWA. Emergency neurological life support: traumatic spine injury. Neurocrit Care. 2017.

  58. Furlan JC, Fehlings MG. Cardiovascular complications after acute spinal cord injury: pathophysiology, diagnosis, and management. Neurosurg Focus. 2008;25(5):E13. https://doi.org/10.3171/FOC.2008.25.11.E13.

    Article  PubMed  Google Scholar 

  59. Ryken TC, Hurlbert RJ, Hadley MN, Aarabi B, Dhall SS, Gelb DE, et al. The acute cardiopulmonary management of patients with cervical spinal cord injuries. Neurosurgery. 2013;72(Suppl 2):84–92. https://doi.org/10.1227/NEU.0b013e318276ee16.

    Article  PubMed  Google Scholar 

  60. Consortium for Spinal Cord Medicine T. Early acute management in adults with spinal cord injury: a clinical practice guideline for health-care professionals. J Spinal Cord Med [Internet]. 2008;1–77. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2582434/

  61. Ploumis A, Yadlapalli N, Fehlings MG, Kwon BK, Vaccaro AR. A systematic review of the evidence supporting a role for vasopressor support in acute SCI. Spinal Cord. 2009;48:356–62.

    Article  Google Scholar 

  62. Stratman RC, Wiesner AM, Smith KM, Cook AM. Hemodynamic management after spinal cord injury. Orthopedics. 2008;31(3):252–5. https://doi.org/10.3928/01477447-20080301-39.

    Article  PubMed  Google Scholar 

  63. Salazar M, Hu BB, Vazquez J, Wintz RL, Varon J. Exogenous vasopressin-induced hyponatremia in patients with vasodilatory shock: two case reports and literature review. J Intensive Care Med. 2015;30(5):253–8. https://doi.org/10.1177/0885066613507410.

    Article  PubMed  Google Scholar 

  64. Marr N, Yu J, Kutsogiannis DJ, Mahmoud SH. Risk of hyponatremia in patients with aneurysmal subarachnoid hemorrhage treated with exogenous vasopressin infusion. Neurocrit Care. 2017;26(2):182–90. https://doi.org/10.1007/s12028-016-0300-8.

    Article  CAS  PubMed  Google Scholar 

  65. Dooney N, Dagal A. Anesthetic considerations in acute spinal cord trauma. Int J Crit Illn Inj Sci. 2011;1(1):36–43. https://doi.org/10.4103/2229-5151.79280.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kwon BK, Curt A, Belanger L. Intrathecal pressure monitoring and cerebrospinal fluid drainage in acute spinal cord injury: a prospective randomized trial. J Neurosurg Spine. 2009;10:179–80.

    Article  Google Scholar 

  67. Chen S, Smielewski P, Czosnyka M, Papadopoulos MC, Saadoun S. Continuous monitoring and visualization of optimum spinal cord perfusion pressure in patients with acute cord injury. J Neurotrauma. 2017;34(21):2941–9. https://doi.org/10.1089/neu.2017.4982.

    Article  PubMed  Google Scholar 

  68. Vale FL, Burns J, Jackson AB, Hadley MN. Combined medical and surgical treatment after acute spinal cord injury: results of a prospective pilot study to assess the merits of aggressive medical resuscitation and blood pressure management. J Neurosurg. 1997;87(2):239–46. https://doi.org/10.3171/jns.1997.87.2.0239.

    Article  CAS  PubMed  Google Scholar 

  69. Inoue T, Manley GT, Patel N, Whetstone WD. Medical and surgical management after spinal cord injury: vasopressor usage, early surgerys, and complications. J Neurotrauma. 2014;31(3):284–91. https://doi.org/10.1089/neu.2013.3061.

    Article  PubMed  Google Scholar 

  70. RandomizedTrial of Early Hemodynamic Management of Patients Following Acute Spinal Cord Injury (TEMPLE). NCT02878850. 2017;1–6.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Lax.

Ethics declarations

Conflict of Interest

Peter Lax and Arman Dagal declare they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Anesthesia for Trauma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lax, P., Dagal, A. Recent Advances in the Use of Vasopressors and Inotropes in Neurotrauma. Curr Anesthesiol Rep 8, 86–93 (2018). https://doi.org/10.1007/s40140-018-0255-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40140-018-0255-8

Keywords

Navigation