Skip to main content

Advertisement

Log in

Emerging Methodology of Intraoperative Hemodynamic Monitoring Research

  • Research Methods and Statistical Analyses (Y Le Manach, Section Editor)
  • Published:
Current Anesthesiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The field of intraoperative hemodynamic research has rapidly expanded over recent years as an ever increasing amount of scientific evidence has become available. This review will discuss the methodology in relationship to (1) the agreement and concordance of hemodynamic monitoring devices, (2) the accuracy of fluid responsiveness indices, and (3) an overview of the various research approaches relevant to this specific field.

Recent Findings

Regarding the methodology in hemodynamic research, the polar plot and gray zone approach has been popularized in the last decade and a new concept of time lag estimation has been proposed in the last few years. What is more important is the trend to utilize the generated evidence into clinical practice, which is called comparative effectiveness research.

Summary

As with most fields of biomedical research, understanding the methodology of reported evidence is essential for the proper evaluation of these data and their eventual incorporation into clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. World Health Organization W. WHO guidelines for safe surgery. 2009.

  2. Moller-Sorensen H, Hansen KL, Ostergaard M, Andersen LW, Moller K. Lack of agreement and trending ability of the endotracheal cardiac output monitor compared with thermodilution. Acta Anaesthesiol Scand. 2012;56(4):433–40. doi:https://doi.org/10.1111/j.1399-6576.2011.02615.x.

    PubMed  CAS  Google Scholar 

  3. Su BC, Tsai YF, Chen CY, Yu HP, Yang MW, Lee WC, et al. Cardiac output derived from arterial pressure waveform analysis in patients undergoing liver transplantation: validity of a third-generation device. Transpl Proc. 2012;44(2):424–8. doi:https://doi.org/10.1016/j.transproceed.2011.12.036.

    CAS  Google Scholar 

  4. Vasdev S, Chauhan S, Choudhury M, Hote MP, Malik M, Kiran U. Arterial pressure waveform derived cardiac output FloTrac/Vigileo system (third generation software): comparison of two monitoring sites with the thermodilution cardiac output. J Clin Monit Comput. 2012;26(2):115–20. doi:https://doi.org/10.1007/s10877-012-9341-5.

    PubMed  Google Scholar 

  5. Sotomi Y, Iwakura K, Higuchi Y, Abe K, Yoshida J, Masai T, et al. The impact of systemic vascular resistance on the accuracy of the FloTrac/Vigileo system in the perioperative period of cardiac surgery: a prospective observational comparison study. J Clin Monit Comput. 2013;27(6):639–46. doi:https://doi.org/10.1007/s10877-013-9481-2.

    PubMed  Google Scholar 

  6. Suehiro K, Tanaka K, Funao T, Matsuura T, Mori T, Nishikawa K. Systemic vascular resistance has an impact on the reliability of the Vigileo-FloTrac system in measuring cardiac output and tracking cardiac output changes. Br J Anaesth. 2013;111(2):170–7. doi:https://doi.org/10.1093/bja/aet022.

    PubMed  CAS  Google Scholar 

  7. Moller-Sorensen H, Graeser K, Hansen KL, Zemtsovski M, Sander EM, Nilsson JC. Measurements of cardiac output obtained with transesophageal echocardiography and pulmonary artery thermodilution are not interchangeable. Acta Anaesthesiol Scand. 2014;58(1):80–8. doi:https://doi.org/10.1111/aas.12227.

    PubMed  CAS  Google Scholar 

  8. Cho YJ, Koo CH, Kim TK, Hong DM, Jeon Y. Comparison of cardiac output measures by transpulmonary thermodilution, pulse contour analysis, and pulmonary artery thermodilution during off-pump coronary artery bypass surgery: a subgroup analysis of the cardiovascular anaesthesia registry at a single tertiary centre. J Clin Monit Comput. 2015. doi:https://doi.org/10.1007/s10877-015-9784-6.

    PubMed  Google Scholar 

  9. Montenij LJ, Sonneveld JP, Nierich AP, Buhre WF, de Waal EE. Diagnostic accuracy of stroke volume variation measured with uncalibrated arterial waveform analysis for the prediction of fluid responsiveness in patients with impaired left ventricular function: a prospective, observational study. J Clin Monit Comput. 2015. doi:https://doi.org/10.1007/s10877-015-9743-2.

    PubMed  PubMed Central  Google Scholar 

  10. Suehiro K, Tanaka K, Yamada T, Matsuura T, Mori T, Funao T, et al. The ability of the Vigileo-FloTrac system to measure cardiac output and track cardiac output changes during one-lung ventilation. J Clin Monit Comput. 2015;29(3):333–9. doi:https://doi.org/10.1007/s10877-014-9609-z.

    PubMed  Google Scholar 

  11. Smetkin AA, Hussain A, Kuzkov VV, Bjertnaes LJ, Kirov MY. Validation of cardiac output monitoring based on uncalibrated pulse contour analysis vs transpulmonary thermodilution during off-pump coronary artery bypass grafting. Br J Anaesth. 2014;112(6):1024–31. doi:https://doi.org/10.1093/bja/aet489.

    PubMed  CAS  Google Scholar 

  12. Conway DH, Hussain OA, Gall I. A comparison of noninvasive bioreactance with oesophageal Doppler estimation of stroke volume during open abdominal surgery: an observational study. Eur J Anaesthesiol. 2013;30(8):501–8. doi:https://doi.org/10.1097/EJA.0b013e3283603250.

    PubMed  CAS  Google Scholar 

  13. Lorne E, Mahjoub Y, Diouf M, Sleghem J, Buchalet C, Guinot PG, et al. Accuracy of impedance cardiography for evaluating trends in cardiac output: a comparison with oesophageal Doppler. Br J Anaesth. 2014;113(4):596–602. doi:https://doi.org/10.1093/bja/aeu136.

    PubMed  CAS  Google Scholar 

  14. Zhang J, Critchley LA, Huang L. Five algorithms that calculate cardiac output from the arterial waveform: a comparison with Doppler ultrasound. Br J Anaesth. 2015;115(3):392–402. doi:https://doi.org/10.1093/bja/aev254.

    PubMed  CAS  Google Scholar 

  15. Kusaka Y, Yoshitani K, Irie T, Inatomi Y, Shinzawa M, Ohnishi Y. Clinical comparison of an echocardiograph-derived versus pulse counter-derived cardiac output measurement in abdominal aortic aneurysm surgery. J Cardiothorac Vasc Anesth. 2012;26(2):223–6. doi:https://doi.org/10.1053/j.jvca.2011.07.011.

    PubMed  Google Scholar 

  16. Maeda T, Yoshitani K, Inatomi Y, Ohnishi Y. Inaccuracy of the FloTrac/Vigileo system in patients with low cardiac index. J Cardiothorac Vasc Anesth. 2014;28(6):1521–6. doi:https://doi.org/10.1053/j.jvca.2014.04.013.

    PubMed  Google Scholar 

  17. MartinBland J, Altman D. Statistical methods for assessing agreement between two methods of clinical measurement. The Lancet. 1986;327(8476):307–10. doi:https://doi.org/10.1016/S0140-6736(86)90837-8.

    Google Scholar 

  18. Zaki R, Bulgiba A, Ismail R, Ismail NA. Statistical methods used to test for agreement of medical instruments measuring continuous variables in method comparison studies: a systematic review. PLoS One. 2012;7(5):e37908. doi:https://doi.org/10.1371/journal.pone.0037908.

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Bland JM, Altman DG. Agreement between methods of measurement with multiple observations per individual. J Biopharm Stat. 2007;17(4):571–82. doi:https://doi.org/10.1080/10543400701329422.

    PubMed  Google Scholar 

  20. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Int J Nurs Stud. 2010;47(8):931–6. doi:https://doi.org/10.1016/j.ijnurstu.2009.10.001.

    Google Scholar 

  21. Myles P, Cui JI. Using the Bland-Altman method to measure agreement with repeated measures. Br J Anaesth. 2007;99(3):309–11.

    PubMed  CAS  Google Scholar 

  22. Critchley LA, Critchley JA. A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. J Clin Monit Comput. 1999;15(2):85–91.

    PubMed  CAS  Google Scholar 

  23. Suehiro K, Tanaka K, Mikawa M, Uchihara Y, Matsuyama T, Matsuura T, et al. Improved performance of the fourth-generation FloTrac/Vigileo system for tracking cardiac output changes. J Cardiothorac Vasc Anesth. 2015;29(3):656–62. doi:https://doi.org/10.1053/j.jvca.2014.07.022.

    PubMed  Google Scholar 

  24. Kutter AP, Mosing M, Hartnack S, Raszplewicz J, Renggli M, Mauch JY, et al. The influence of acute pulmonary hypertension on cardiac output measurements: calibrated pulse contour analysis, transpulmonary and pulmonary artery thermodilution against a modified Fick method in an animal model. Anesth Analg. 2015;121(1):99–107. doi:https://doi.org/10.1213/ane.0000000000000655.

    PubMed  CAS  Google Scholar 

  25. Schloglhofer T, Gilly H, Schima H. Semi-invasive measurement of cardiac output based on pulse contour: a review and analysis. Can J Anaesth. 2014;61(5):452–79. doi:https://doi.org/10.1007/s12630-014-0135-8.

    PubMed  Google Scholar 

  26. Feldheiser A, Hunsicker O, Krebbel H, Weimann K, Kaufner L, Wernecke KD, et al. Oesophageal Doppler and calibrated pulse contour analysis are not interchangeable within a goal-directed haemodynamic algorithm in major gynaecological surgery. Br J Anaesth. 2014;113(5):822–31. doi:https://doi.org/10.1093/bja/aeu241.

    PubMed  CAS  Google Scholar 

  27. Perrino AC Jr, O’Connor T, Luther M. Transtracheal Doppler cardiac output monitoring: comparison to thermodilution during noncardiac surgery. Anesth Analg. 1994;78(6):1060–6.

    PubMed  Google Scholar 

  28. Critchley LA, Lee A, Ho AM. A critical review of the ability of continuous cardiac output monitors to measure trends in cardiac output. Anesth Analg. 2010;111(5):1180–92. doi:https://doi.org/10.1213/ANE.0b013e3181f08a5b.

    PubMed  Google Scholar 

  29. Hallsjo Sander C, Hallback M, Wallin M, Emtell P, Oldner A, Bjorne H. Novel continuous capnodynamic method for cardiac output assessment during mechanical ventilation. Br J Anaesth. 2014;112(5):824–31. doi:https://doi.org/10.1093/bja/aet486.

    PubMed  CAS  Google Scholar 

  30. Chin JH, Kim WJ, Choi JH, Han YA, Kim SO, Choi WJ. Unreliable tracking ability of the third-generation FloTrac/Vigileo system for changes in stroke volume after fluid administration in patients with high systemic vascular resistance during laparoscopic surgery. PLoS One. 2015;10(11):e0142125. doi:https://doi.org/10.1371/journal.pone.0142125.

    PubMed  PubMed Central  Google Scholar 

  31. Montenij LJ, Buhre WF, de Jong SA, Harms JH, van Herwaarden JA, Kruitwagen CL, et al. Arterial pressure waveform analysis versus thermodilution cardiac output measurement during open abdominal aortic aneurysm repair: a prospective observational study. Eur J Anaesthesiol. 2015;32(1):13–9. doi:https://doi.org/10.1097/eja.0000000000000160.

    PubMed  Google Scholar 

  32. Thonnerieux M, Alexander B, Binet C, Obadia JF, Bastien O, Desebbe O. The ability of esCCO and ECOM monitors to measure trends in cardiac output during alveolar recruitment maneuver after cardiac surgery: a comparison with the pulmonary thermodilution method. Anesth Analg. 2015;121(2):383–91. doi:https://doi.org/10.1213/ane.0000000000000753.

    PubMed  Google Scholar 

  33. •• Saugel B, Grothe O, Wagner JY. Tracking changes in cardiac output: statistical considerations on the 4-quadrant plot and the polar plot methodology. Anesth Analg. 2015;121(2):514–24. doi:https://doi.org/10.1213/ane.0000000000000725. This literature tells us in detail about the methodology of the 4 quadrant plot and the polar plot analysis. The authors pointed out some problems on these analysis.

    Google Scholar 

  34. Nordstrom J, Hallsjo-Sander C, Shore R, Bjorne H. Stroke volume optimization in elective bowel surgery: a comparison between pulse power wave analysis (LiDCOrapid) and oesophageal Doppler (CardioQ). Br J Anaesth. 2013;110(3):374–80. doi:https://doi.org/10.1093/bja/aes399.

    PubMed  CAS  Google Scholar 

  35. Critchley LA, Yang XX, Lee A. Assessment of trending ability of cardiac output monitors by polar plot methodology. J Cardiothorac Vasc Anesth. 2011;25(3):536–46. doi:https://doi.org/10.1053/j.jvca.2011.01.003.

    PubMed  Google Scholar 

  36. Axiak Flammer SM, Critchley LA, Weber A, Pirbodaghi T, Brinks H, Vandenberghe S. Reliability of lithium dilution cardiac output in anaesthetized sheep. Br J Anaesth. 2013;111(5):833–9. doi:https://doi.org/10.1093/bja/aet220.

    PubMed  CAS  Google Scholar 

  37. Bubenek-Turconi SI, Craciun M, Miclea I, Perel A. Noninvasive continuous cardiac output by the Nexfin before and after preload-modifying maneuvers: a comparison with intermittent thermodilution cardiac output. Anesth Analg. 2013;117(2):366–72. doi:https://doi.org/10.1213/ANE.0b013e31829562c3.

    PubMed  Google Scholar 

  38. Fischer MO, Balaire X, Mauff Le, de Kergal C, Boisselier C, Gerard JL, Hanouz JL, et al. The diagnostic accuracy of estimated continuous cardiac output compared with transthoracic echocardiography. Can J Anaesth (Journal canadien d’anesthesie). 2014;61(1):19–26. doi:https://doi.org/10.1007/s12630-013-0055-z.

    Google Scholar 

  39. Aranada M, Mihm FG, Garrett S, Mihm MN, Pearl RG. Continuous cardiac output catheters delay in in vitro response time after controlled flow changes. J Am Soc Anesthesiol. 1998;89(6):1592–5.

    Google Scholar 

  40. Lazor MA, Pierce ET, Stanley GD, Cass JL, Halpern EF, Bode RH. Evaluation of the accuracy and response time of STAT-mode continuous cardiac output. J Cardiothorac Vasc Anesth. 1997;11(4):432–6.

    PubMed  CAS  Google Scholar 

  41. Knapp CH, Carter GC. The generalized correlation method for estimation of time delay. IEEE Trans Acoust Speech Signal Process. 1976;24(4):320–7.

    Google Scholar 

  42. • Kim SH, Lilot M, Sidhu KS, Rinehart J, Yu Z, Canales C et al. Accuracy and precision of continuous noninvasive arterial pressure monitoring compared with invasive arterial pressure: a systematic review and meta-analysis. Anesthesiology. 2014;120(5):1080–97. doi:https://doi.org/10.1097/ALN.0000000000000226. The meta-analysis revealed that accuracy and precision of continuous noninvasive arterial pressure monitoring devices are larger than what was expected by the Association for the Advancement of Medical Instrumentation (AAMI).

    PubMed  Google Scholar 

  43. Instrumentation AftAoM. ANSI/AAMI SP10:2002/(R)2008 & ANSI/AAMI SP10:2002/A1:2003/(R)2008 & ANSI/AAMI SP10:2002/A2:2006/(R)2008 Manual, electronic, or automated sphygmomanometers. 2008.

  44. AftAoM Instrumentation. Non-invasive sphygmomanometers—Part 2: clinical validation of automated measurement type. ANSI/AAMI/ISO 81060–2. 2009;2009:1–21.

    Google Scholar 

  45. Fu Q, Mi WD, Zhang H. Stroke volume variation and pleth variability index to predict fluid responsiveness during resection of primary retroperitoneal tumors in Hans Chinese. Biosci Trends. 2012;6(1):38–43. doi:https://doi.org/10.5582/bst.2012.v6.1.38.

    PubMed  CAS  Google Scholar 

  46. Hoiseth LO, Hoff IE, Myre K, Landsverk SA, Kirkeboen KA. Dynamic variables of fluid responsiveness during pneumoperitoneum and laparoscopic surgery. Acta Anaesthesiol Scand. 2012;56(6):777–86. doi:https://doi.org/10.1111/j.1399-6576.2011.02641.x.

    PubMed  CAS  Google Scholar 

  47. Willars C, Dada A, Hughes T, Green D. Functional haemodynamic monitoring: the value of SVV as measured by the LiDCORapid in predicting fluid responsiveness in high risk vascular surgical patients. Int J Surg. 2012;10(3):148–52. doi:https://doi.org/10.1016/j.ijsu.2012.02.003.

    PubMed  CAS  Google Scholar 

  48. Kim SY, Song Y, Shim JK, Kwak YL. Effect of pulse pressure on the predictability of stroke volume variation for fluid responsiveness in patients with coronary disease. J Crit Care. 2013;28(3):318-e1–7. doi:https://doi.org/10.1016/j.jcrc.2012.09.011.

    Google Scholar 

  49. Li C, Lin FQ, Fu SK, Chen GQ, Yang XH, Zhu CY, et al. Stroke volume variation for prediction of fluid responsiveness in patients undergoing gastrointestinal surgery. Int J Med Sci. 2013;10(2):148–55. doi:https://doi.org/10.7150/ijms.5293.

    PubMed  PubMed Central  Google Scholar 

  50. Vos JJ, Kalmar AF, Struys MM, Wietasch JK, Hendriks HG, Scheeren TW. Comparison of arterial pressure and plethysmographic waveform-based dynamic preload variables in assessing fluid responsiveness and dynamic arterial tone in patients undergoing major hepatic resection. Br J Anaesth. 2013;110(6):940–6. doi:https://doi.org/10.1093/bja/aes508.

    PubMed  CAS  Google Scholar 

  51. Fu Q, Zhao F, Mi W, Zhang H. Stroke volume variation fail to predict fluid responsiveness in patients undergoing pulmonary lobectomy with one-lung ventilation using thoracotomy. Biosci Trends. 2014;8(1):59–63.

    PubMed  Google Scholar 

  52. Lee JH, No HJ, Song IK, Kim HS, Kim CS, Kim JT. Prediction of fluid responsiveness using a non-invasive cardiac output monitor in children undergoing cardiac surgery. Br J Anaesth. 2015;115(1):38–44. doi:https://doi.org/10.1093/bja/aev109.

    PubMed  CAS  Google Scholar 

  53. Toyoda D, Fukuda M, Iwasaki R, Terada T, Sato N, Ochiai R, et al. The comparison between stroke volume variation and filling pressure as an estimate of right ventricular preload in patients undergoing renal transplantation. J Anesth. 2015;29(1):40–6. doi:https://doi.org/10.1007/s00540-014-1870-2.

    PubMed  Google Scholar 

  54. Yang SY, Shim JK, Song Y, Seo SJ, Kwak YL. Validation of pulse pressure variation and corrected flow time as predictors of fluid responsiveness in patients in the prone position. Br J Anaesth. 2013;110(5):713–20. doi:https://doi.org/10.1093/bja/aes475.

    PubMed  Google Scholar 

  55. Coste J, Pouchot J. A grey zone for quantitative diagnostic and screening tests. Int J Epidemiol. 2003;32(2):304–13.

    PubMed  Google Scholar 

  56. Cannesson M, Le Manach Y, Hofer CK, Goarin JP, Lehot J-J, Vallet B, et al. Assessing the diagnostic accuracy of pulse pressure variations for the prediction of fluid responsiveness: a “gray zone” approach. J Am Soc Anesthesiol. 2011;115(2):231–41.

    Google Scholar 

  57. Biais M, Ehrmann S, Mari A, Conte B, Mahjoub Y, Desebbe O, et al. Clinical relevance of pulse pressure variations for predicting fluid responsiveness in mechanically ventilated intensive care unit patients: the grey zone approach. Crit Care. 2014;18:587.

    PubMed  PubMed Central  Google Scholar 

  58. Julien F, Hilly J, Sallah TB, Skhiri A, Michelet D, Brasher C, et al. Plethysmographic variability index (PVI) accuracy in predicting fluid responsiveness in anesthetized children. Pediatr Anesth. 2013;23(6):536–46.

    Google Scholar 

  59. Fischer MO, Pelissier A, Bohadana D, Gerard JL, Hanouz JL, Fellahi JL. Prediction of responsiveness to an intravenous fluid challenge in patients after cardiac surgery with cardiopulmonary bypass: a comparison between arterial pulse pressure variation and digital plethysmographic variability index. J Cardiothorac Vasc Anesth. 2013;27(6):1087–93. doi:https://doi.org/10.1053/j.jvca.2013.02.024.

    PubMed  Google Scholar 

  60. Guinot P-G, de Broca B, Bernard E, Arab OA, Lorne E, Dupont H. Respiratory stroke volume variation assessed by oesophageal Doppler monitoring predicts fluid responsiveness during laparoscopy. Br J Anaesth. 2014;112(4):660–4.

    PubMed  Google Scholar 

  61. Vos JJ, Poterman M, Salm PP, Van Amsterdam K, Struys MMRF, Scheeren TWL, et al. Noninvasive pulse pressure variation and stroke volume variation to predict fluid responsiveness at multiple thresholds: a prospective observational study. Can J Anesth (Journal canadien d’anesthésie). 2015;62(11):1153–60. doi:https://doi.org/10.1007/s12630-015-0464-2.

    Google Scholar 

  62. Cecconi M, Monge García MI, Gracia Romero M, Mellinghoff J, Caliandro F, Grounds RM, et al. The use of pulse pressure variation and stroke volume variation in spontaneously breathing patients to assess dynamic arterial elastance and to predict arterial pressure response to fluid administration. Anesth Analg. 2015;120(1):76–84. doi:https://doi.org/10.1213/ane.0000000000000442.

    PubMed  Google Scholar 

  63. Cannesson M, Le Manach Y, Hofer CK, Goarin JP, Lehot JJ, Vallet B, et al. Assessing the diagnostic accuracy of pulse pressure variations for the prediction of fluid responsiveness: a “gray zone” approach. Anesthesiology. 2011;115(2):231–41. doi:https://doi.org/10.1097/ALN.0b013e318225b80a.

    PubMed  Google Scholar 

  64. Michard F, Chemla D, Teboul J-L. Applicability of pulse pressure variation: how many shades of grey. Crit Care. 2015;19(1):144.

    PubMed  PubMed Central  Google Scholar 

  65. Pearse RM, Harrison DA, MacDonald N, Gillies MA, Blunt M, Ackland G, et al. Effect of a perioperative, cardiac output-guided hemodynamic therapy algorithm on outcomes following major gastrointestinal surgery: a randomized clinical trial and systematic review. JAMA. 2014;311(21):2181–90. doi:https://doi.org/10.1001/jama.2014.5305.

    PubMed  CAS  Google Scholar 

  66. Peng K, Li J, Cheng H, Ji FH. Goal-directed fluid therapy based on stroke volume variations improves fluid management and gastrointestinal perfusion in patients undergoing major orthopedic surgery. Med Princ Pract. 2014;23(5):413–20. doi:https://doi.org/10.1159/000363573.

    PubMed  PubMed Central  Google Scholar 

  67. Cannesson M, Pestel G, Ricks C, Hoeft A, Perel A. Hemodynamic monitoring and management in patients undergoing high risk surgery: a survey among North American and European anesthesiologists. Crit Care. 2011;15(4):R197. doi:https://doi.org/10.1186/cc10364.

    PubMed  PubMed Central  Google Scholar 

  68. Miller TE, Roche AM, Gan TJ. Poor adoption of hemodynamic optimization during major surgery: are we practicing substandard care? Anesth Analg. 2011;112(6):1274–6.

    PubMed  Google Scholar 

  69. Committee on Comparative Effectiveness Research Prioritization BoHCS, Institute of Medicine of the National Academies. Initial National Priorities for Comparative Effectiveness Research.

  70. Schumock GT, Pickard AS. Comparative effectiveness research: relevance and applications to pharmacy. Am J Health-Syst Pharm. 2009;66(14):1278–86.

    PubMed  Google Scholar 

  71. Sox HC, Goodman SN. The methods of comparative effectiveness research. Annu Rev Public Health. 2012;33:425–45. doi:https://doi.org/10.1146/annurev-publhealth-031811-124610.

    PubMed  Google Scholar 

  72. Armstrong K. Methods in comparative effectiveness research. J Clin Oncol. 2012;30(34):4208–14. doi:https://doi.org/10.1200/JCO.2012.42.2659.

    PubMed  PubMed Central  Google Scholar 

  73. Dreyer NA, Schneeweiss S, McNeil BJ, Berger ML, Walker AM, Ollendorf DA, et al. GRACE principles: recognizing high-quality observational studies of comparative effectiveness. Am J Manag Care. 2010;16(6):467–71.

    PubMed  Google Scholar 

  74. Dreyer NA. Using observational studies for comparative effectiveness: finding quality with GRACE. J Comp Eff Res. 2013;2(5):413–8. doi:https://doi.org/10.2217/cer.13.59.

    PubMed  Google Scholar 

  75. Coordination GI. GRACE: Good ReseAch for comparative effectiveness. https://www.graceprinciples.org. Accessed 2 May 2016.

  76. •• Dreyer NA, Velentgas P, Westrich K, Dubois R. The GRACE checklist for rating the quality of observational studies of comparative effectiveness: a tale of hope and caution. J Manag Care Pharm. 2014;20(3):301–8. This authors provide us the checklist named “Good Research for Comparative Effectiveness (GRACE) checklist,” which will allow us to properly validate the observational studies of comparative effectiveness research.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxime Cannesson.

Ethics declarations

Conflict of Interest

Yohei Fujimoto declares that he has no conflict of interest. Brenton Alexander declares that he has no conflict of interest. Brandon Stark declares that he has no conflict of interest. Maxime Cannesson has received financial support through grants from Edwards Lifesciences and Masimo Corporation; has received compensation from Edwards Lifesciences, Masimo Corporation, Covidien, Draeger, Philips Medical Systems, Gauss Surgical, Fresenius Kabi, and ConMed for service as a consultant; co-founded Sironis, a biomedical company, in 2010 to develop closed-loop fluid management systems and noninvasive hemodynamic monitoring tools; and holds 37 % equity interest in Sironis.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Research Methods and Statistical Analyses.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujimoto, Y., Alexander, B., Stark, B. et al. Emerging Methodology of Intraoperative Hemodynamic Monitoring Research. Curr Anesthesiol Rep 6, 283–292 (2016). https://doi.org/10.1007/s40140-016-0176-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40140-016-0176-3

Keywords

Navigation