Skip to main content

Advertisement

Log in

Diagnosis and Management of Respiratory Adverse Events in the Operating Room

  • Pediatric Anesthesia (J Lerman, Section Editor)
  • Published:
Current Anesthesiology Reports Aims and scope Submit manuscript

Abstract

Perioperative respiratory adverse events cause more than three-quarters of all perioperative critical incidents in pediatric anesthesia and approximately half of anesthesia-related cardiac arrests. We can define seven main clinical types of perioperative respiratory adverse events: upper airway obstruction, laryngospasm, bronchospasm, severe persistent cough, apnea, stridor, and oxygen desaturation. Depending on the definitions used for preoperative respiratory adverse events and the cohort of children examined, the incidence varies between 8 and 21 %. This review discusses the recognition and treatment of perioperative respiratory adverse events. Furthermore, it provides guidance on how to identify children who are at increased risk for developing perioperative respiratory adverse events and how to tailor the perioperative anesthetic management for the individual child in order to minimize the risk of perioperative respiratory adverse events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Tay CL, Tan GM, Ng SB. Critical incidents in paediatric anaesthesia: an audit of 10,000 anaesthetics in Singapore. Paediatr Anaesth. 2001;11:711–8.

    PubMed  CAS  Google Scholar 

  2. • Wan S, Siow YN, Lee SM, et al. Audits and critical incident reporting in paediatric anaesthesia: lessons from 75,331 anaesthetics. Singapore Med J. 2013;54:69–74. To date this is the largest retrospective analysis of perioperative critical incidences in children covering a 10 year period in a single center.

  3. Gobbo Braz L, Braz JR, Modolo NS, et al. Perioperative cardiac arrest and its mortality in children. A 9-year survey in a Brazilian tertiary teaching hospital. Paediatr Anaesth. 2006;16:860–6.

    PubMed  Google Scholar 

  4. Bhananker SM, Ramamoorthy C, Geiduschek JM, et al. Anesthesia-related cardiac arrest in children: update from the Pediatric Perioperative Cardiac Arrest Registry. Anesth Analg. 2007;105:344–50.

    Google Scholar 

  5. Bharti N, Batra YK, Kaur H. Paediatric perioperative cardiac arrest and its mortality: database of a 60-month period from a tertiary care paediatric centre. Eur J Anaesthesiol. 2009;26:490–5.

    PubMed  Google Scholar 

  6. Kurowski I, Sims C. Unplanned anesthesia-related admissions to pediatric intensive care—a 6-year audit. Paediatr Anaesth. 2007;17:575–80.

    PubMed  Google Scholar 

  7. Morray JP, Geiduschek JM, Caplan RA, et al. A comparison of pediatric and adult anesthesia closed malpractice claims. Anesthesiology. 1993;78:461–7.

    PubMed  CAS  Google Scholar 

  8. von Ungern-Sternberg BS, Boda K, Chambers NA, et al. Risk assessment for respiratory complications in paediatric anaesthesia: a prospective cohort study. Lancet. 2010;376:773–83.

    Google Scholar 

  9. Oberer C, von Ungern-Sternberg BS, Frei FJ, et al. Respiratory reflex responses of the larynx differ between sevoflurane and propofol in pediatric patients. Anesthesiology. 2005;103:1142–8.

    PubMed  Google Scholar 

  10. von Ungern-Sternberg BS, Erb TO, Reber A, et al. Opening the upper airway–airway maneuvers in pediatric anesthesia. Paediatr Anaesth. 2005;15:181–9.

    Google Scholar 

  11. von Ungern-Sternberg BS, Erb TO, Frei FJ. Management of the upper airway in spontaneously breathing children. A challenge for the anaesthetist. Anaesthesist. 2006;55:164–70.

    Google Scholar 

  12. Bordet F, Allaouchiche B, Lansiaux S, et al. Risk factors for airway complications during general anaesthesia in paediatric patients. Paediatr Anaesth. 2002;12:762–9.

    PubMed  Google Scholar 

  13. Mamie C, Habre W, Delhumeau C, et al. Incidence and risk factors of perioperative respiratory adverse events in children undergoing elective surgery. Paediatr Anaesth. 2004;14:218–24.

    PubMed  Google Scholar 

  14. Schreiner MS, O’Hara I, Markakis DA, et al. Do children who experience laryngospasm have an increased risk of upper respiratory tract infection? Anesthesiology. 1996;85:475–80.

    PubMed  CAS  Google Scholar 

  15. Tait AR, Malviya S, Voepel-Lewis T, et al. Risk factors for perioperative adverse respiratory events in children with upper respiratory tract infections. Anesthesiology. 2001;95:299–306.

    PubMed  CAS  Google Scholar 

  16. Green SM, Klooster M, Harris T, et al. Ketamine sedation for pediatric gastroenterology procedures. J Pediatr Gastroenterol Nutr. 2001;32:26–33.

    PubMed  CAS  Google Scholar 

  17. Murat I, Constant I, Maud’huy H. Perioperative anaesthetic morbidity in children: a database of 24,165 anaesthetics over a 30-month period. Paediatr Anaesth. 2004;14:158–66.

    PubMed  Google Scholar 

  18. von Ungern-Sternberg BS, Boda K, Schwab C, et al. Laryngeal mask airway is associated with an increased incidence of adverse respiratory events in children with recent upper respiratory tract infections. Anesthesiology. 2007;107:714–9.

    Google Scholar 

  19. Flick RP, Wilder RT, Pieper SF, et al. Risk factors for laryngospasm in children during general anesthesia. Paediatr Anaesth. 2008;18:289–96.

    PubMed  Google Scholar 

  20. von Ungern-Sternberg BS, Habre W, Erb TO, et al. Salbutamol premedication in children with a recent respiratory tract infection. Paediatr Anaesth. 2009;19:1064–9.

    Google Scholar 

  21. van der Griend BF, Lister NA, McKenzie IM, et al. Postoperative mortality in children after 101,885 anesthetics at a tertiary pediatric hospital. Anesth Analg. 2011;112:1440–7.

    PubMed  Google Scholar 

  22. Nafiu OO, Prasad Y, Chimbira WT. Association of childhood high body mass index and sleep disordered breathing with perioperative laryngospasm. Int J Pediatr Otorhinolaryngol. 2013;77:2044–8.

    PubMed  Google Scholar 

  23. Tiret L, Nivoche Y, Hatton F, et al. Complications related to anaesthesia in infants and children. A prospective survey of 40240 anaesthetics. Br J Anaesth. 1988;61:263–9.

    PubMed  CAS  Google Scholar 

  24. Lumeng JC, Chervin RD. Epidemiology of pediatric obstructive sleep apnea. Proc Am Thorac Soc. 2008;5:242–52.

    PubMed  PubMed Central  Google Scholar 

  25. Tait AR, Voepel-Lewis T, O’Brien LM. Postsurgical behaviors in children with and without symptoms of sleep-disordered breathing. Perioper Med (Lond). 2014;3:8.

    PubMed  PubMed Central  Google Scholar 

  26. Wilson SL, Thach BT, Brouillette RT, et al. Upper airway patency in the human infant: influence of airway pressure and posture. J Appl Physiol Respir Environ Exerc Physiol. 1980;48:500–4.

    PubMed  CAS  Google Scholar 

  27. Montravers P, Dureuil B, Desmonts JM. Effects of i.v. midazolam on upper airway resistance. Br J Anaesth. 1992;68:27–31.

    PubMed  CAS  Google Scholar 

  28. Keidan I, Fine GF, Kagawa T, et al. Work of breathing during spontaneous ventilation in anesthetized children: a comparative study among the face mask, laryngeal mask airway and endotracheal tube. Anesth Analg. 2000;91:1381–8.

    PubMed  CAS  Google Scholar 

  29. Meier S, Geiduschek J, Paganoni R, et al. The effect of chin lift, jaw thrust, and continuous positive airway pressure on the size of the glottic opening and on stridor score in anesthetized, spontaneously breathing children. Anesth Analg. 2002;94:494–9.

    PubMed  Google Scholar 

  30. Crawford MW, Arrica M, Macgowan CK, et al. Extent and localization of changes in upper airway caliber with varying concentrations of sevoflurane in children. Anesthesiology. 2006;105:1147–52.

    PubMed  CAS  Google Scholar 

  31. Arens R, McDonough JM, Corbin AM, et al. Upper airway size analysis by magnetic resonance imaging of children with obstructive sleep apnea syndrome. Am J Respir Crit Care Med. 2003;167:65–70.

    PubMed  Google Scholar 

  32. Arens R, Sin S, Nandalike K, et al. Upper airway structure and body fat composition in obese children with obstructive sleep apnea syndrome. Am J Respir Crit Care Med. 2011;183:782–7.

    PubMed  Google Scholar 

  33. Jeans WD, Fernando DC, Maw AR, et al. A longitudinal study of the growth of the nasopharynx and its contents in normal children. Br J Radiol. 1981;54:117–21.

    PubMed  CAS  Google Scholar 

  34. Reber A, Wetzel SG, Schnabel K, et al. Effect of combined mouth closure and chin lift on upper airway dimensions during routine magnetic resonance imaging in pediatric patients sedated with propofol. Anesthesiology. 1999;90:1617–23.

    PubMed  CAS  Google Scholar 

  35. Arai YC, Fukunaga K, Hirota S, et al. The effects of chin lift and jaw thrust while in the lateral position on stridor score in anesthetized children with adenotonsillar hypertrophy. Anesth Analg. 2004;99:1638–41.

    PubMed  Google Scholar 

  36. • Moustafa MA, Emara DM, Nouh MR. Effect of a neck collar on upper airway size in children sedated with propofol-midazolam combination during magnetic resonance imaging. Paediatr Anaesth. 2015;25:421–27. Neck collar can be easily applied and reduces sedation induced upper airway obstruction in children undergoing MRI.

  37. Heard C, Harutunians M, Houck J, et al. Propofol anesthesia for children undergoing magnetic resonance imaging: a comparison with isoflurane, nitrous oxide, and a laryngeal mask airway. Anesth Analg. 2015;120:157–64.

    PubMed  CAS  Google Scholar 

  38. Crawford MW, Rohan D, Macgowan CK, et al. Effect of propofol anesthesia and continuous positive airway pressure on upper airway size and configuration in infants. Anesthesiology. 2006;105:45–50.

    PubMed  Google Scholar 

  39. Burgoyne LL, Anghelescu DL. Intervention steps for treating laryngospasm in pediatric patients. Paediatr Anaesth. 2008;18:297–302.

    PubMed  Google Scholar 

  40. Orestes MI, Lander L, Verghese S, et al. Incidence of laryngospasm and bronchospasm in pediatric adenotonsillectomy. Laryngoscope. 2012;122:425–8.

    PubMed  Google Scholar 

  41. •• Mc Donnell C. Interventions guided by analysis of quality indicators decrease the frequency of laryngospasm during pediatric anesthesia. Paediatr Anaesth. 2013;23:579–87. Departmental education together with ensuring availability to emergency drugs can significantly reduce the incidence of laryngospasms requiring “a call for help.”.

    PubMed  Google Scholar 

  42. • von Ungern-Sternberg BS. Respiratory complications in the pediatric postanesthesia care unit. Anesthesiol Clin. 2014;32:45–61. This review summarizes the respiratory complications and their management in the post anesthetic care unit.

  43. Visvanathan T, Kluger MT, Webb RK, et al. Crisis management during anaesthesia: laryngospasm. Qual Saf Health Care. 2005;14:e3.

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Al-alami AA, Zestos MM, Baraka AS. Pediatric laryngospasm: prevention and treatment. Curr Opin Anaesthesiol. 2009;22:388–95.

    PubMed  Google Scholar 

  45. Hampson-Evans D, Morgan P, Farrar M. Pediatric laryngospasm. Paediatr Anaesth. 2008;18:303–7.

    PubMed  Google Scholar 

  46. Nishino T, Kochi T, Ishii M. Differences in respiratory reflex responses from the larynx, trachea, and bronchi in anesthetized female subjects. Anesthesiology. 1996;84:70–4.

    PubMed  CAS  Google Scholar 

  47. Davidson A. The correlation between bispectral index and airway reflexes with sevoflurane and halothane anaesthesia. Paediatr Anaesth. 2004;14:241–6.

    PubMed  Google Scholar 

  48. Tagaito Y, Isono S, Nishino T. Upper airway reflexes during a combination of propofol and fentanyl anesthesia. Anesthesiology. 1998;88:1459–66.

    PubMed  CAS  Google Scholar 

  49. •• Erb TO, von Ungern-Sternberg BS, Keller K et al. The effect of intravenous lidocaine on laryngeal and respiratory reflex responses in anaesthetised children*. Anaesthesia. 2013;68:13–20. This interventional study demonstrates the time dependent effect of lignocaine on reducing reflexes due to airway manipulation.

    PubMed  Google Scholar 

  50. Roy WL, Lerman J. Laryngospasm in paediatric anaesthesia. Can J Anaesth. 1988;35:93–8.

    PubMed  CAS  Google Scholar 

  51. Fink BR. The etiology and treatment of laryngeal spasm. Anesthesiology. 1956;17:569–77.

    PubMed  CAS  Google Scholar 

  52. Rajan GR. Supraglottic obstruction versus true laryngospasm: the best treatment. Anesthesiology. 1999;91:581.

    PubMed  CAS  Google Scholar 

  53. Hammer J, Reber A, Trachsel D, et al. Effect of jaw-thrust and continuous positive airway pressure on tidal breathing in deeply sedated infants. J Pediatr. 2001;138:826–30.

    PubMed  CAS  Google Scholar 

  54. Nawfal M, Baraka A. Propofol for relief of extubation laryngospasm. Anaesthesia. 2002;57:1036.

    PubMed  CAS  Google Scholar 

  55. Afshan G, Chohan U, Qamar-Ul-Hoda M, et al. Is there a role of a small dose of propofol in the treatment of laryngeal spasm? Paediatr Anaesth. 2002;12:625–8.

    PubMed  Google Scholar 

  56. Batra YK, Ivanova M, Ali SS, et al. The efficacy of a subhypnotic dose of propofol in preventing laryngospasm following tonsillectomy and adenoidectomy in children. Paediatr Anaesth. 2005;15:1094–7.

    PubMed  Google Scholar 

  57. Larson CPJ. Laryngospasm—the best treatment. Anesthesiology. 1998;89(5):1293–4.

    PubMed  Google Scholar 

  58. Redden RJ, Miller M, Campbell RL. Submental administration of succinylcholine in children. Anesth Prog. 1990;37:296–300.

    PubMed  PubMed Central  CAS  Google Scholar 

  59. •• Luce V, Harkouk H, Brasher C et al. Supraglottic airway devices vs tracheal intubation in children: a quantitative meta-analysis of respiratory complications. Paediatr Anaesth. 2014;24:1088–98. This meta-analysis demonstrates endotracheal intubation to have a higher incidence of laryngospasm when compared with laryngeal mask airway.

    PubMed  Google Scholar 

  60. •• von Ungern-Sternberg BS, Davies K, Hegarty M et al. The effect of deep vs. awake extubation on respiratory complications in high-risk children undergoing adenotonsillectomy: a randomised controlled trial. Eur J Anaesthesiol. 2013;30:529–36. This randomized control trial did not show any difference in regards to respiratory adverse events in high risk children who were extubated deep or awake.

  61. von Ungern-Sternberg BS, Ramgolam A, Zhang B, et al. Is intravenous induction of anaesthesia superior to inhalational induction in children with increased airway susceptibility?. Singapore: ANZCA; 2014.

    Google Scholar 

  62. Devys JM, Mourissoux G, Donnette FX, et al. Intubating conditions and adverse events during sevoflurane induction in infants. Br J Anaesth. 2011;106:225–9.

    PubMed  CAS  Google Scholar 

  63. von Ungern-Sternberg BS, Saudan S, Petak F, et al. Desflurane but not sevoflurane impairs airway and respiratory tissue mechanics in children with susceptible airways. Anesthesiology. 2008;108:216–24.

    Google Scholar 

  64. Erb TO, von Ungern-Sternberg BS, Keller K, et al. Fentanyl does not reduce the incidence of laryngospasm in children anesthetized with sevoflurane. Anesthesiology. 2010;113:41–7.

    PubMed  CAS  Google Scholar 

  65. • Goudra BG, Singh PM, Manjunath AK, et al. Effectiveness of high dose remifentanil in preventing coughing and laryngospasm in non-paralyzed patients for advanced bronchoscopic procedures. Ann Thorac Med. 2014;9:23–8. High dose remifentanyl reduced the incidence of coughing and laryngospasm during bronchoscopy.

  66. • Mihara T, Uchimoto K, Morita S, et al. The efficacy of lidocaine to prevent laryngospasm in children: a systematic review and meta-analysis. Anaesthesia. 2014;69:1388–96. Intravenous lignocaine is superior to topical lignocaine in preventing laryngospasm due to airway manipulation.

    PubMed  CAS  Google Scholar 

  67. • Hamilton ND, Hegarty M, Calder A, et al. Does topical lidocaine before tracheal intubation attenuate airway responses in children? An observational audit. Paediatr Anaesth. 2012;22:345–50. This observational study questions the role of topical lignocaine in preventing laryngospasm due to airway manipulation.

    PubMed  Google Scholar 

  68. Gulhas N, Durmus M, Demirbilek S, et al. The use of magnesium to prevent laryngospasm after tonsillectomy and adenoidectomy: a preliminary study. Paediatr Anaesth. 2003;13:43–7.

    PubMed  Google Scholar 

  69. • Marzban S, Haddadi S, Naghipour MR, et al. The effect of intravenous magnesium sulfate on laryngospasm after elective adenotonsillectomy surgery in children. Anesth Pain Med. 2014;4:e15960. Intravenous magnesium might be beneficial in reducing the incidence of postoperative laryngospasm.

  70. Olsson GL. Bronchospasm during anaesthesia. A computer-aided incidence study of 136,929 patients. Acta Anaesthesiol Scand. 1987;31:244–52.

    PubMed  CAS  Google Scholar 

  71. •• Habre W, Petak F. Anaesthesia management of patients with airway susceptibilities: what have we learnt from animal models? Eur J Anaesthesiol. 2013;30:519–28. This excellent review provides an overview of the animal experimental evidence in the causes of anesthesia related bronchospasm.

    PubMed  CAS  Google Scholar 

  72. Sheikh A, Shehata YA, Brown SG, et al. Adrenaline (epinephrine) for the treatment of anaphylaxis with and without shock. Cochrane Database Syst Rev. 2008;(4):CD006312. doi:https://doi.org/10.1002/14651858.CD006312.pub2.

  73. Corbridge TC, Hall JB. The assessment and management of adults with status asthmaticus. Am J Respir Crit Care Med. 1995;151:1296–316.

    PubMed  CAS  Google Scholar 

  74. Taylor RH, Lerman J. High-efficiency delivery of salbutamol with a metered-dose inhaler in narrow tracheal tubes and catheters. Anesthesiology. 1991;74:360–3.

    PubMed  CAS  Google Scholar 

  75. Moore PE, Ryckman KK, Williams SM, et al. Genetic variants of GSNOR and ADRB2 influence response to albuterol in African-American children with severe asthma. Pediatr Pulmonol. 2009;44:649–54.

    PubMed  Google Scholar 

  76. Travers AH, Jones AP, Camargo CAJ, et al. Intravenous beta(2)-agonists versus intravenous aminophylline for acute asthma. Cochrane Database Syst Rev. 2012;12:CD010256.

    PubMed  Google Scholar 

  77. British Thoracic Society Scottish Intercollegiate Guidelines Network. British guideline on the management of asthma. Thorax. 2008;63(Suppl 4):iv1–121.

    Google Scholar 

  78. Rowe BH, Bretzlaff JA, Bourdon C, et al. Magnesium sulfate for treating exacerbations of acute asthma in the emergency department. Cochrane Database Syst Rev. 2000;(2):CD001490. doi:https://doi.org/10.1002/14651858.CD001490.

  79. Sabato K, Hanson JH. Mechanical ventilation for children with status asthmaticus. Respir Care Clin N Am. 2000;6:171–88.

    PubMed  CAS  Google Scholar 

  80. Sarnaik AP, Daphtary KM, Meert KL, et al. Pressure-controlled ventilation in children with severe status asthmaticus. Pediatr Crit Care Med. 2004;5:133–8.

    PubMed  Google Scholar 

  81. Mayordomo-Colunga J, Medina A, Rey C, et al. Non-invasive ventilation in pediatric status asthmaticus: a prospective observational study. Pediatr Pulmonol. 2011;46:949–55.

    PubMed  Google Scholar 

  82. Scalfaro P, Sly PD, Sims C, et al. Salbutamol prevents the increase of respiratory resistance caused by tracheal intubation during sevoflurane anesthesia in asthmatic children. Anesth Analg. 2001;93:898–902.

    PubMed  CAS  Google Scholar 

  83. Lauer R, Vadi M, Mason L. Anaesthetic management of the child with co-existing pulmonary disease. Br J Anaesth. 2012;109(Suppl 1):i47–59.

    PubMed  Google Scholar 

  84. Yamakage M, Iwasaki S, Satoh JI, et al. Inhibitory effects of the alpha-2 adrenergic agonists clonidine and dexmedetomidine on enhanced airway tone in ovalbumin-sensitized guinea pigs. Eur J Anaesthesiol. 2008;25:67–71.

    PubMed  CAS  Google Scholar 

  85. Groeben H, Mitzner W, Brown RH. Effects of the alpha2-adrenoceptor agonist dexmedetomidine on bronchoconstriction in dogs. Anesthesiology. 2004;100:359–63.

    PubMed  CAS  Google Scholar 

  86. Dinh Xuan AT, Matran R, Regnard J. Comparative effects of rilmenidine and clonidine on bronchial responses to histamine in asthmatic subjects. Br J Clin Pharmacol. 1988;26:703–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  87. Dinh Xuan AT, Regnard J, Matran R, et al. Effects of clonidine on bronchial responses to histamine in normal and asthmatic subjects. Eur Respir J. 1988;1:345–50.

    PubMed  CAS  Google Scholar 

  88. Groeben H, Schwalen A, Irsfeld S, et al. Intravenous lidocaine and bupivacaine dose-dependently attenuate bronchial hyperreactivity in awake volunteers. Anesthesiology. 1996;84:533–9.

    PubMed  CAS  Google Scholar 

  89. Groeben H, Silvanus MT, Beste M, et al. Both intravenous and inhaled lidocaine attenuate reflex bronchoconstriction but at different plasma concentrations. Am J Respir Crit Care Med. 1999;159:530–5.

    PubMed  CAS  Google Scholar 

  90. Groeben H, Silvanus MT, Beste M, et al. Combined lidocaine and salbutamol inhalation for airway anesthesia markedly protects against reflex bronchoconstriction. Chest. 2000;118:509–15.

    PubMed  CAS  Google Scholar 

  91. Adamzik M, Groeben H, Farahani R, et al. Intravenous lidocaine after tracheal intubation mitigates bronchoconstriction in patients with asthma. Anesth Analg. 2007;104:168–72.

    PubMed  CAS  Google Scholar 

  92. Groeben H, Peters J. Lidocaine exerts its effect on induced bronchospasm by mitigating reflexes, rather than by attenuation of smooth muscle contraction. Acta Anaesthesiol Scand. 2007;51:359–64.

    PubMed  CAS  Google Scholar 

  93. Chang HY, Togias A, Brown RH. The effects of systemic lidocaine on airway tone and pulmonary function in asthmatic subjects. Anesth Analg. 2007;104:1109–15.

    PubMed  CAS  Google Scholar 

  94. Burches BRJ, Warner DO. Bronchospasm after intravenous lidocaine. Anesth Analg. 2008;107:1260–2.

    PubMed  Google Scholar 

  95. Cox RG, Barker GA, Bohn DJ. Efficacy, results, and complications of mechanical ventilation in children with status asthmaticus. Pediatr Pulmonol. 1991;11:120–6.

    PubMed  CAS  Google Scholar 

  96. Calder A, Hegarty M, Erb TO, et al. Predictors of postoperative sore throat in intubated children. Paediatr Anaesth. 2012;22:239–43.

    PubMed  Google Scholar 

  97. Habre W, Scalfaro P, Sims C, et al. Respiratory mechanics during sevoflurane anesthesia in children with and without asthma. Anesth Analg. 1999;89:1177–81.

    PubMed  CAS  Google Scholar 

  98. Lele E, Petak F, Carnesecchi S, et al. The protective effects of volatile anesthestics against the bronchoconstriction induced by an allergic reaction in sensitized rabbit pups. Anesth Analg. 2013;116:1257–64.

    PubMed  CAS  Google Scholar 

  99. Dikmen Y, Eminoglu E, Salihoglu Z, et al. Pulmonary mechanics during isoflurane, sevoflurane and desflurane anaesthesia. Anaesthesia. 2003;58:745–8.

    PubMed  CAS  Google Scholar 

  100. Nyktari V, Papaioannou A, Volakakis N, et al. Respiratory resistance during anaesthesia with isoflurane, sevoflurane, and desflurane: a randomized clinical trial. Br J Anaesth. 2011;107:454–61.

    PubMed  CAS  Google Scholar 

  101. Eames WO, Rooke GA, Wu RS, et al. Comparison of the effects of etomidate, propofol, and thiopental on respiratory resistance after tracheal intubation. Anesthesiology. 1996;84:1307–11.

    PubMed  CAS  Google Scholar 

  102. Hirshman CA, Bergman NA. Factors influencing intrapulmonary airway calibre during anaesthesia. Br J Anaesth. 1990;65:30–42.

    PubMed  CAS  Google Scholar 

  103. Rooke GA, Choi JH, Bishop MJ. The effect of isoflurane, halothane, sevoflurane, and thiopental/nitrous oxide on respiratory system resistance after tracheal intubation. Anesthesiology. 1997;86:1294–9.

    PubMed  CAS  Google Scholar 

  104. Allen JY, Macias CG. The efficacy of ketamine in pediatric emergency department patients who present with acute severe asthma. Ann Emerg Med. 2005;46:43–50.

    PubMed  Google Scholar 

  105. Jat KR, Chawla D. Ketamine for management of acute exacerbations of asthma in children. Cochrane Database Syst Rev. 2012;11:CD009293.

    PubMed  Google Scholar 

  106. Tuxen DV, Lane S. The effects of ventilatory pattern on hyperinflation, airway pressures, and circulation in mechanical ventilation of patients with severe air-flow obstruction. Am Rev Respir Dis. 1987;136:872–9.

    PubMed  CAS  Google Scholar 

  107. McBride JT. The association of acetaminophen and asthma prevalence and severity. Pediatrics. 2011;128:1181–5.

    PubMed  Google Scholar 

  108. Lesko SM, Louik C, Vezina RM, et al. Asthma morbidity after the short-term use of ibuprofen in children. Pediatrics. 2002;109:E20.

    PubMed  Google Scholar 

  109. Debley JS, Carter ER, Gibson RL, et al. The prevalence of ibuprofen-sensitive asthma in children: a randomized controlled bronchoprovocation challenge study. J Pediatr. 2005;147:233–8.

    PubMed  Google Scholar 

  110. Short JA, Barr CA, Palmer CD, et al. Use of diclofenac in children with asthma. Anaesthesia. 2000;55:334–7.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Britta S. von Ungern-Sternberg.

Additional information

This article is part of the Topical Collection on Pediatric Anesthesia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Regli, A., von Ungern-Sternberg, B.S. Diagnosis and Management of Respiratory Adverse Events in the Operating Room. Curr Anesthesiol Rep 5, 156–167 (2015). https://doi.org/10.1007/s40140-015-0103-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40140-015-0103-z

Keywords

Navigation