Skip to main content

Advertisement

Log in

A Reflection on the Mechanism of the Role of Nanoparticles in Increasing the Efficacy of Anti-tumour Properties of Docetaxel

  • Nanoparticle-based Drug Delivery (M Gogoi, Section Editor)
  • Published:
Current Pathobiology Reports

Abstract

Purpose of Review

Docetaxel is an important cancer therapeutic drug that targets microtubules. As a taxane, it has high cytotoxic potential and causes cell death by inducing polymerization of tubulin monomers and inhibiting depolymerization or inducing apoptosis by stimulating the phosphorylation B-cell lymphoma 2 (Bcl-2). As a hydrophobic drug, the clinical application of docetaxel is limited. The nanoparticle-based platforms as drug carriers have opened up the vast potential of docetaxel. The purpose of the review is to introduce the developments in nano-drug carriers in meeting the needs to target individual tumour cellular components.

Recent Findings

The progress from individual nanoparticles like liposome or cubosome to hybrid nanoparticles capable of carrying multiple drugs, targeting them to the tumour site, and releasing the active molecules in a sustained and prolonged manner has been addressed by researchers in recent times. Newer developments of active targeting systems such as through antibody conjugation to the nanoparticle are observed in this area.

Summary

From the knowledge that is currently available in public domain, it can be foreseen that extensive in vivo assessment of the formulations that have shown good prospects is required. The in vivo assessment needs to be based on in vitro models coupled with extensive toxicity studies. This is required to take a larger percentage of the methodologies available in the literature to preclinical and clinical trials and thus to the market. Safe, side effect–free, biocompatible and biodegradable nanoparticles as carriers for docetaxel are around the corner.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stout NL, Wagner SS. Antineoplastic therapy side effects and polypharmacy in older adults with cancer. Top Geriatr Rehabil. 2019;35(1):15–30. https://doi.org/10.1097/TGR.0000000000000212.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sohail MF, Rehman M, Sarwar HS, Naveed S, Salman O, Bukhari NI, et al. Advancements in the oral delivery of docetaxel: challenges, current state-of-the-art and future trends. Int J Nanomedicine. 2018;13:3145–61. https://doi.org/10.2147/ijn.S164518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ashtarinezhad A, Panahyab A, Vatanpour H, Shirazi F. FTIR determination of miconazole effects on mice fetus brain tissue. Iranian J Pharm Sci. 2014;10(2):79–84.

    Google Scholar 

  4. Thirumaran R, Prendergast GC, Gilman PB. Chapter 7 - Cytotoxic chemotherapy in clinical treatment of cancer. In: Prendergast GC, Jaffee EM, editors. Cancer Immunotherapy. Burlington: Academic Press; 2007. p. 101–16.

    Chapter  Google Scholar 

  5. Fletcher DA, Mullins RD. Cell mechanics and the cytoskeleton. Nature. 2010;463(7280):485–92. https://doi.org/10.1038/nature08908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Oshiro C, Marsh S, McLeod H, Carrillo MW, Klein T, Altman R. Taxane pathway. Pharmacogenet Genomics. 2009;19(12):979–83. https://doi.org/10.1097/FPC.0b013e3283335277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Haldar S, Basu A, Croce CM. Bcl2 is the guardian of microtubule integrity. Cancer Res. 1997;57(2):229–33.

    CAS  PubMed  Google Scholar 

  8. Mackler NJ, Pienta KJ. Drug insight: use of docetaxel in prostate and urothelial cancers. Nat Clin Pract Urol. 2005;2(2):92–100.

    Article  CAS  Google Scholar 

  9. Eftekhari S, Montazeri H, Tarighi P. Synergistic anti-tumor effects of liraglutide, a glucagon-like peptide-1 receptor agonist, along with Docetaxel on LNCaP prostate cancer cell line. European Journal of Pharmacology. 2020;878:173102.

  10. Jain S, Spandana G, Agrawal AK, Kushwah V, Thanki K. Enhanced antitumor efficacy and reduced toxicity of docetaxel loaded estradiol functionalized stealth polymeric nanoparticles. Mol Pharm. 2015;12(11):3871–84.

    Article  CAS  Google Scholar 

  11. Taheri-Ledari R, Zhang W, Radmanesh M, Mirmohammadi SS, Maleki A, Cathcart N, et al. Multi-stimuli nanocomposite therapeutic: docetaxel targeted delivery and synergies in treatment of human breast cancer tumor. Small. 2020;16(41):2002733.

    Article  CAS  Google Scholar 

  12. Maloney SM, Hoover CA, Morejon-Lasso LV, Prosperi JR. Mechanisms of taxane resistance. Cancers. 2020;12(11):57. https://doi.org/10.3390/cancers12113323.

    Article  CAS  Google Scholar 

  13. Nøhr-Nielsen A, Bagger SO, Brünner N, Stenvang J, Lund TM. Pharmacodynamic modelling reveals synergistic interaction between docetaxel and SCO-101 in a docetaxel-resistant triple negative breast cancer cell line. European Journal of Pharmaceutical Sciences. 2020;148:105315.

  14. Pucci P, Rescigno P, Sumanasuriya S, de Bono J, Crea F. Hypoxia and noncoding RNAs in taxane resistance. Trends Pharmacol Sci. 2018;39(8):695–709. https://doi.org/10.1016/j.tips.2018.05.002.

    Article  CAS  PubMed  Google Scholar 

  15. Guo YF, Zhao S, Qiu HH, Wang T, Zhao YN, Han MH, et al. Shape of nanoparticles as a design parameter to improve docetaxel antitumor efficacy. Bioconjug Chem. 2018;29(4):1302–11. https://doi.org/10.1021/acs.bioconjchem.8b00059.

    Article  CAS  PubMed  Google Scholar 

  16. Panda J, Satapathy BS, Mandal B, Sen R, Mukherjee B, Sarkar R, et al. Anticancer potential of docetaxel-loaded cobalt ferrite nanocarrier: an in vitro study on MCF-7 and MDA-MB-231 cell lines. J Microencapsul. 2021;38(1):36–46. https://doi.org/10.1080/02652048.2020.1842529.

    Article  CAS  PubMed  Google Scholar 

  17. Hu Y, Ran M, Wang B, Lin Y, Cheng Y. Co-delivery of docetaxel and curcumin via nanomicelles for enhancing anti-ovarian cancer treatment. 2020;15:9703-15. https://doi.org/10.2147/ijn.s274083.

  18. Dawoud M, Abourehab MA, Abdou R. Monoolein cubic nanoparticles as novel carriers for docetaxel. J Drug Deliv Sci Technol. Part A. 2020;56:101501. https://doi.org/10.1016/j.jddst.2020.101501.

  19. Dong Z, Shen Y, Zhao S, Wang X, Han M, Zhao N et al. Influence of hydrophobic chains in nanocarriers on antitumor efficacy of docetaxel nanoparticles. 2020;17(4):1205-14. https://doi.org/10.1021/acs.molpharmaceut.9b01228.

  20. Li N, Mai Y, Liu Q, Gou G, Yang J. Docetaxel-loaded D-α-tocopheryl polyethylene glycol-1000 succinate liposomes improve lung cancer chemotherapy and reverse multidrug resistance. Drug Deliv Transl Res. 2021;11(1):131–41. https://doi.org/10.1007/s13346-020-00720-9.

    Article  CAS  PubMed  Google Scholar 

  21. Ding Y, Ding Y, Wang Y, Wang C, Gao M, Xu Y, et al. Soluplus(®)/TPGS mixed micelles for co-delivery of docetaxel and piperine for combination cancer therapy. Pharm Dev Technol. 2020;25(1):107–15. https://doi.org/10.1080/10837450.2019.1679834.

    Article  CAS  PubMed  Google Scholar 

  22. Talkar SS, Kharkar PB, Patravale VB. Docetaxel loaded pomegranate seed oil based nanostructured lipid carriers: a potential alternative to current formulation. AAPS PharmSciTech. 2020;21(8):295. https://doi.org/10.1208/s12249-020-01839-1.

    Article  CAS  PubMed  Google Scholar 

  23. Ghamkhari A, Abbasi F, Abbasi E, Ghorbani M. A novel thermo-responsive system based on β-cyclodextrin-nanocomposite for improving the docetaxel activity. Int J Polym Mater Polym Biomater. 2020:1–11. https://doi.org/10.1080/00914037.2020.1765357.

  24. Gong F, Wang R, Zhu Z, Duan J, Teng X, Cui Z-K. Drug-interactive mPEG-b-PLA-Phe(Boc) micelles enhance the tolerance and anti-tumor efficacy of docetaxel. Drug Delivery. 2020;27(1):238–47. https://doi.org/10.1080/10717544.2020.1718245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Attia MF, Anton N, Wallyn J, Omran Z, Vandamme TF. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J Pharm Pharmacol. 2019;71(8):1185–98. https://doi.org/10.1111/jphp.13098.

    Article  CAS  PubMed  Google Scholar 

  26. He C, Cai P, Li J, Zhang T, Lin L, Abbasi AZ, et al. Blood-brain barrier-penetrating amphiphilic polymer nanoparticles deliver docetaxel for the treatment of brain metastases of triple negative breast cancer. J Control Release. 2017;246:98–109. https://doi.org/10.1016/j.jconrel.2016.12.019.

    Article  CAS  PubMed  Google Scholar 

  27. Gao J, Liu J, Xie F, Lu Y, Yin C, Shen X. Co-delivery of docetaxel and salinomycin to target both breast cancer cells and stem cells by PLGA/TPGS nanoparticles. Int J Nanomedicine. 2019;14:9199–216. https://doi.org/10.2147/IJN.S230376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hoang B, Ernsting MJ, Roy A, Murakami M, Undzys E, Li SD. Docetaxel-carboxymethylcellulose nanoparticles target cells via a SPARC and albumin dependent mechanism. Biomaterials. 2015;59:66–76. https://doi.org/10.1016/j.biomaterials.2015.04.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vardhan H, Mittal P, Adena SK, Mishra B. Long-circulating polyhydroxybutyrate-co-hydroxyvalerate nanoparticles for tumor targeted docetaxel delivery: formulation, optimization and in vitro characterization. European journal of pharmaceutical sciences: official journal of the European Federation for Pharmaceutical Sciences. 2017;99:85-94. https://doi.org/10.1016/j.ejps.2016.12.007.

  30. Marcinkowska M, Stanczyk M, Janaszewska A, Gajek A, Ksiezak M, Dzialak P, et al. Molecular mechanisms of antitumor activity of PAMAM dendrimer conjugates with anticancer drugs and a monoclonal antibody. Polymers. 2019;11(9):16. https://doi.org/10.3390/polym11091422.

    Article  CAS  Google Scholar 

  31. Ashrafizadeh M, Ahmadi Z, Mohamadi N, Zarrabi A, Abasi S, Dehghannoudeh G, et al. Chitosan-based advanced materials for docetaxel and paclitaxel delivery: recent advances and future directions in cancer theranostics. Int J Biol Macromol. 2020;145:282–300. https://doi.org/10.1016/j.ijbiomac.2019.12.145.

    Article  CAS  PubMed  Google Scholar 

  32. Mirzaie ZH, Irani S, Mirfakhraie R, Atyabi SM, Dinarvand M, Dinarvand R, et al. Docetaxel-chitosan nanoparticles for breast cancer treatment: cell viability and gene expression study. Chem Biol Drug Des. 2016;88(6):850–8. https://doi.org/10.1111/cbdd.12814.

    Article  CAS  PubMed  Google Scholar 

  33. Wang H, Xu Y, Zhou X. Docetaxel-loaded chitosan microspheres as a lung targeted drug delivery system: in vitro and in vivo evaluation. Int J Mol Sci. 2014;15(3):3519–32. https://doi.org/10.3390/ijms15033519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee E, Kim H, Lee I-H, Jon S. In vivo antitumor effects of chitosan-conjugated docetaxel after oral administration. J Control Release. 2009;140(2):79–85. https://doi.org/10.1016/j.jconrel.2009.08.014.

    Article  CAS  PubMed  Google Scholar 

  35. Hwang H-Y, Kim I-S, Kwon IC, Kim Y-H. Tumor targetability and antitumor effect of docetaxel-loaded hydrophobically modified glycol chitosan nanoparticles. J Control Release. 2008;128(1):23–31. https://doi.org/10.1016/j.jconrel.2008.02.003.

    Article  CAS  PubMed  Google Scholar 

  36. Mu C-F, Cui F, Yin Y-M, Cho H-J, Kim D-D. Docetaxel-loaded chitosan-cholesterol conjugate-based self-assembled nanoparticles for overcoming multidrug resistance in cancer cells. Pharmaceutics. 2020;12(9):783.

    Article  Google Scholar 

  37. Youm I, Agrahari V, Murowchick JB, Youan B-BC. Uptake and cytotoxicity of docetaxel-loaded hyaluronic acid-grafted oily core nanocapsules in MDA-MB 231 cancer cells. Pharm Res. 2014;31(9):2439–52.

    Article  CAS  Google Scholar 

  38. Zhu Z, Li Y, Yang X, Pan W, Pan H. The reversion of anti-cancer drug antagonism of tamoxifen and docetaxel by the hyaluronic acid-decorated polymeric nanoparticles. Pharmacol Res. 2017;126:84–96. https://doi.org/10.1016/j.phrs.2017.07.011.

    Article  CAS  PubMed  Google Scholar 

  39. He L, Shang Z, Liu H, Yuan Z-x. Alginate-based platforms for cancer-targeted drug delivery. Biomed Res Int. 2020;2020:1487259–17. https://doi.org/10.1155/2020/1487259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang P, Chen L, Zhang Z, Lin L, Li Y. Pharmacokinetics in rats and efficacy in murine ovarian cancer model for solid lipid nanoparticles loading docetaxel. J Nanosci Nanotechnol. 2010;10(11):7541–4. https://doi.org/10.1166/jnn.2010.2819.

    Article  CAS  PubMed  Google Scholar 

  41. da Rocha MCO, da Silva PB, Radicchi MA, Andrade BYG, de Oliveira JV, Venus T, et al. Docetaxel-loaded solid lipid nanoparticles prevent tumor growth and lung metastasis of 4 T1 murine mammary carcinoma cells. J Nanobiotechnology. 2020;18(1):43. https://doi.org/10.1186/s12951-020-00604-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim KS, Youn YS, Bae YH. Immune-triggered cancer treatment by intestinal lymphatic delivery of docetaxel-loaded nanoparticle. Journal of controlled release : official journal of the Controlled Release Society. 2019;311-312:85-95. doi:10.1016/j.jconrel.2019.08.027.

  43. Kothari IR, Mazumdar S, Sharma S, Italiya K, Mittal A, Chitkara D. Docetaxel and alpha-lipoic acid co-loaded nanoparticles for cancer therapy. Ther Deliv. 2019;10(4):227–40. https://doi.org/10.4155/tde-2018-0074.

    Article  CAS  PubMed  Google Scholar 

  44. Vakili-Ghartavol R, Rezayat SM, Faridi-Majidi R, Sadri K, Jaafari MR. Optimization of docetaxel loading conditions in Liposomes: proposing potential products for metastatic breast carcinoma chemotherapy. Sci Rep. 2020;10(1):5569. https://doi.org/10.1038/s41598-020-62501-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hua H, Zhang N, Liu D, Song L, Liu T, Li S, et al. Multifunctional gold nanorods and docetaxel-encapsulated liposomes for combined thermo- and chemotherapy. Int J Nanomedicine. 2017;12:7869–84. https://doi.org/10.2147/ijn.s143977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chowdhury N, Vhora I, Patel K, Doddapaneni R, Mondal A, Singh M. Liposomes co-loaded with 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3 (PFKFB3) shRNA plasmid and docetaxel for the treatment of non-small cell lung cancer. Pharm Res. 2017;34(11):2371–84. https://doi.org/10.1007/s11095-017-2244-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pereira S, Egbu R, Jannati G, Al-Jamal WT. Docetaxel-loaded liposomes: the effect of lipid composition and purification on drug encapsulation and in vitro toxicity. Int J Pharm. 2016;514(1):150–9. https://doi.org/10.1016/j.ijpharm.2016.06.057.

    Article  CAS  PubMed  Google Scholar 

  48. Kushwah V, Jain DK, Agrawal AK, Jain S. Improved antitumor efficacy and reduced toxicity of docetaxel using anacardic acid functionalized stealth liposomes. Colloids Surf B: Biointerfaces. 2018;172:213–23. https://doi.org/10.1016/j.colsurfb.2018.08.047.

    Article  CAS  PubMed  Google Scholar 

  49. Ranjan A, Benjamin CJ, Negussie AH, Chokshi S, Chung PH, Volkin D, et al. Biodistribution and efficacy of low temperature-sensitive liposome encapsulated docetaxel combined with mild hyperthermia in a mouse model of prostate cancer. Pharm Res. 2016;33(10):2459–69. https://doi.org/10.1007/s11095-016-1971-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Belz J, Castilla-Ojo N, Sridhar S, Kumar R. Radiosensitizing silica nanoparticles encapsulating docetaxel for treatment of prostate cancer. In: Zeineldin R, editor. Cancer Nanotechnology: Methods and Protocols. New York, NY: Springer New York; 2017. p. 403–9.

    Chapter  Google Scholar 

  51. Li L, Tang F, Liu H, Liu T, Hao N, Chen D, et al. In vivo delivery of silica nanorattle encapsulated docetaxel for liver cancer therapy with low toxicity and high efficacy. ACS Nano. 2010;4(11):6874–82. https://doi.org/10.1021/nn100918a.

    Article  CAS  PubMed  Google Scholar 

  52. Ao M, Xiao X, Ao Y. Low density lipoprotein modified silica nanoparticles loaded with docetaxel and thalidomide for effective chemotherapy of liver cancer. Braz J Med Biol Res. 2018;51(3): e6650. https://doi.org/10.1590/1414-431X20176650.

  53. Hao Y, Zheng C, Song Q, Chen H, Nan W, Wang L, et al. Pressure-driven accumulation of Mn-doped mesoporous silica nanoparticles containing 5-aza-2-deoxycytidine and docetaxel at tumours with a dry cupping device. J Drug Target. 2021:1–10. https://doi.org/10.1080/1061186X.2021.1892117.

  54. Thambiraj S, Shruthi S, Vijayalakshmi R, Ravi SD. Evaluation of cytotoxic activity of docetaxel loaded gold nanoparticles for lung cancer drug delivery. Cancer Treat Res Commun. 2019;21:100157. https://doi.org/10.1016/j.ctarc.2019.100157.

    Article  CAS  PubMed  Google Scholar 

  55. Wan J, Ma X, Xu D, Yang B, Yang S, Han S. Docetaxel-decorated anticancer drug and gold nanoparticles encapsulated apatite carrier for the treatment of liver cancer. J Photochem Photobiol B. 2018;185:73–9. https://doi.org/10.1016/j.jphotobiol.2018.05.021.

    Article  CAS  PubMed  Google Scholar 

  56. Raposo LR, Roma-Rodrigues C, Jesus J, Martins L, Pombeiro AJ, Baptista PV, et al. Targeting canine mammary tumours via gold nanoparticles functionalized with promising Co(II) and Zn(II) compounds. Vet Comp Oncol. 2017;15(4):1537–42. https://doi.org/10.1111/vco.12298.

    Article  CAS  PubMed  Google Scholar 

  57. François A, Laroche A, Pinaud N, Salmon L, Ruiz J, Robert J, et al. Encapsulation of docetaxel into PEGylated gold nanoparticles for vectorization to cancer cells. ChemMedChem. 2011;6(11):2003–8. https://doi.org/10.1002/cmdc.201100311.

    Article  CAS  PubMed  Google Scholar 

  58. Wang H, Zhao R, Li Y, Liu H, Li F, Zhao Y, et al. Aspect ratios of gold nanoshell capsules mediated melanoma ablation by synergistic photothermal therapy and chemotherapy. Nanomed Nanotechnol Biol Med. 2016;12(2):439–48. https://doi.org/10.1016/j.nano.2015.11.013.

    Article  CAS  Google Scholar 

  59. Huang X, Yi C, Fan Y, Zhang Y, Zhao L, Liang Z, et al. Magnetic Fe3 O 4 nanoparticles grafted with single-chain antibody (scFv) and docetaxel loaded β-cyclodextrin potential for ovarian cancer dual-targeting therapy. Mater Sci Eng C Mater Biol Appl. 2014;42:325–32. https://doi.org/10.1016/j.msec.2014.05.041.

    Article  CAS  PubMed  Google Scholar 

  60. Xie W, Gao Q, Guo Z, Wang D, Gao F, Wang X. Injectable and self-healing thermosensitive magnetic hydrogel for asynchronous control release of doxorubicin and docetaxel to treat triple-negative breast cancer. 2017;9(39):33660-73. https://doi.org/10.1021/acsami.7b10699.

  61. Taheri-Ledari R, Zhang W, Radmanesh M, Mirmohammadi SS, Maleki A. Multi-stimuli nanocomposite therapeutic: docetaxel targeted delivery and synergies in treatment of human breast cancer tumor. 2020;16(41):e2002733. https://doi.org/10.1002/smll.202002733.

  62. Sato A, Itcho N, Ishiguro H, Okamoto D, Kobayashi N, Kawai K, et al. Magnetic nanoparticles of Fe3O4 enhance docetaxel-induced prostate cancer cell death. Int J Nanomedicine. 2013;8(1):3151–60. https://doi.org/10.2147/ijn.s40766.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Du B, Han S, Li H, Zhao F, Su X, Cao X, et al. Multi-functional liposomes showing radiofrequency-triggered release and magnetic resonance imaging for tumor multi-mechanism therapy. Nanoscale. 2015;7(12):5411–26. https://doi.org/10.1039/c4nr04257c.

    Article  CAS  PubMed  Google Scholar 

  64. Yang Q, Chen H, Bai Y, Cao Y, Hu W, Zhang L. Facile synthesis of lipid-perfluorocarbon nanoemulsion coated with silica shell as an ultrasound imaging agent. 2018;7(4). https://doi.org/10.1002/adhm.201700816.

  65. Wu R, Zhang Z, Wang B, Chen G, Zhang Y, Deng H, et al. Combination chemotherapy of lung cancer - co-delivery of docetaxel prodrug and cisplatin using aptamer-decorated lipid-polymer hybrid nanoparticles. Drug Des Devel Ther. 2020;14:2249–61. https://doi.org/10.2147/dddt.s246574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lee HS, Kang NW, Kim H, Kim DH, Chae JW, Lee W, et al. Chondroitin sulfate-hybridized zein nanoparticles for tumor-targeted delivery of docetaxel. Carbohydr Polym. 2021;253:117187. https://doi.org/10.1016/j.carbpol.2020.117187.

    Article  CAS  PubMed  Google Scholar 

  67. Yang Q, Liu DZ, Liu M, Ji QF, Mei QB, Cheng Y, et al. Bone-targeted calcium phosphate-polymer hybrid nanoparticle co-deliver zoledronate and docetaxel to treat bone metastasis of prostate cancer. J Pharm Sci. 2021;110(2):876–87. https://doi.org/10.1016/j.xphs.2020.11.005.

    Article  CAS  PubMed  Google Scholar 

  68. Han J, Zhen J, Du Nguyen V, Go G, Choi Y, Ko SY, et al. Hybrid-actuating macrophage-based microrobots for active cancer therapy. Sci Rep. 2016;6:28717. https://doi.org/10.1038/srep28717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gao J, Liu J. Co-delivery of docetaxel and salinomycin to target both breast cancer cells and stem cells by PLGA/TPGS nanoparticles. Int J Nanomedicine. 2019;14:9199-216. doi:https://doi.org/10.2147/ijn.s230376.

  70. Chen L, Zhou L, Wang C, Han Y, Lu Y, Liu J, et al. Tumor-targeted drug and CpG delivery system for phototherapy and docetaxel-enhanced immunotherapy with polarization toward M1-type macrophages on triple negative breast cancers. 2019;31(52):e1904997. 10.1002/adma.201904997.

  71. Zhao D, Jiang K, Wang YQ, Cheng J, Mo FL, Luo T, et al. Out-of-the-box nanocapsules packed with on-demand hydrophobic anticancer drugs for lung targeting, esterase triggering, and synergy therapy. Adv Healthc Mater. 9. 10.1002/adhm.202001803.

  72. Sung SY, Su YL, Cheng W, Hu PF, Chiang CS, Chen WT, et al. Graphene quantum dots-mediated theranostic penetrative delivery of drug and photolytics in deep tumors by targeted biomimetic nanosponges. Nano Lett. 2019;19(1):69–81. https://doi.org/10.1021/acs.nanolett.8b03249.

    Article  CAS  PubMed  Google Scholar 

  73. Sumer Bolu B, Golba B. Trastuzumab targeted micellar delivery of docetaxel using dendron-polymer conjugates 2020;8(9):2600-10. https://doi.org/10.1039/c9bm01764j.

  74. Ashrafizadeh M, Zarrabi A, Hashemi F, Zabolian A, Saleki H, Bagherian M, et al. Polychemotherapy with curcumin and doxorubicin via biological nanoplatforms: enhancing antitumor activity. Pharmaceutics. 2020;12(11):33. https://doi.org/10.3390/pharmaceutics12111084.

    Article  CAS  Google Scholar 

  75. Hu YZ, Ran MN, Wang BL, Lin YZ, Cheng YZ, Zheng SP. Co-delivery of docetaxel and curcumin via nanomicelles for enhancing anti-ovarian cancer treatment. Int J Nanomed. 2020;15:9703–15. https://doi.org/10.2147/ijn.S274083.

    Article  CAS  Google Scholar 

  76. Deng L, Zhu X, Yu Z, Li Y, Qin L, Liu Z, et al. Novel T7-Modified pH-responsive targeted nanosystem for co-delivery of docetaxel and curcumin in the treatment of esophageal cancer. Int J Nanomedicine. 2020;15:7745–62. https://doi.org/10.2147/IJN.S257312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rawal S, Bora V, Patel B, Patel M. Surface-engineered nanostructured lipid carrier systems for synergistic combination oncotherapy of non-small cell lung cancer. Drug Deliv Transl Res. 22. 10.1007/s13346-020-00866-6.

  78. Jackson JK, Letchford K. The effective solubilization of hydrophobic drugs using epigallocatechin gallate or tannic acid-based formulations. J Pharm Sci. 2016;105(10):3143–52. https://doi.org/10.1016/j.xphs.2016.06.027.

    Article  CAS  PubMed  Google Scholar 

  79. Bharali DJ, Sudha T, Cui H, Mian BM, Mousa SA. Anti-CD24 nano-targeted delivery of docetaxel for the treatment of prostate cancer. Nanomed Nanotechnol Biol Med. 2017;13(1):263–73. https://doi.org/10.1016/j.nano.2016.08.017.

    Article  CAS  Google Scholar 

  80. Nasrollahi F, Varshosaz J, Khodadadi AA, Lim S, Jahanian-Najafabadi A. Targeted delivery of docetaxel by use of transferrin/poly(allylamine hydrochloride)-functionalized graphene oxide nanocarrier. ACS applied materials & interfaces. 2016;8(21):13282–93. https://doi.org/10.1021/acsami.6b02790.

    Article  CAS  Google Scholar 

  81. Razi Soofiyani S, Mohammad Hoseini A, Mohammadi A, Khaze Shahgoli V, Baradaran B, Hejazi MS. siRNA-mediated silencing of CIP2A enhances docetaxel activity against PC-3 prostate cancer cells. Adv Pharm Bull. 2017;7(4):637–43. https://doi.org/10.15171/apb.2017.076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bahreyni A, Luo HL. Advances in targeting cancer-associated genes by designed siRNA in prostate cancer. Cancers. 2020;12(12):3619. https://doi.org/10.3390/cancers12123619.

  83. Imran M, Saleem S, Chaudhuri A, Ali J, Baboota S. Docetaxel: an update on its molecular mechanisms, therapeutic trajectory and nanotechnology in the treatment of breast, lung and prostate cancer. J Drug Deliv Sci Technol. 2020;60:101959. https://doi.org/10.1016/j.jddst.2020.101959.

    Article  CAS  Google Scholar 

  84. Vermunt MAC, Bergman AM, van der Putten E, Beijnen JH. The intravenous to oral switch of taxanes: strategies and current clinical developments. Future Oncol. 2021;7(11):1379–99. https://doi.org/10.2217/fon-2020-0876.

  85. McEntee M, Silverman JA, Rassnick K, Zgola M, Chan AO, Tau PT, et al. Enhanced bioavailability of oral docetaxel by co-administration of cyclosporin A in dogs and rats. Vet Comp Oncol. 2003;1(2):105–12. https://doi.org/10.1046/j.1476-5829.2003.00015.x.

    Article  CAS  PubMed  Google Scholar 

  86. Adityan S, Tran M, Bhavsar C, Wu SY. Nano-therapeutics for modulating the tumour microenvironment: design, development, and clinical translation. J Control Release. 2020;327:512–32. https://doi.org/10.1016/j.jconrel.2020.08.016.

    Article  CAS  PubMed  Google Scholar 

  87. Anselmo AC, Mitragotri S. Nanoparticles in the clinic: an update. Bioeng Transl Med. 2019;4(3):16. https://doi.org/10.1002/btm2.10143.

    Article  Google Scholar 

  88. Di Maio M, Perrone F, Conte P. Real-world evidence in oncology: opportunities and limitations. Oncologist. 2020;25(5):E746–E52. https://doi.org/10.1634/theoncologist.2019-0647.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

SM and SN thank Chettinad Academy of Research and Education for CARE JRF. The authors thank the infrastructure support provided by Chettinad Academy of Research and Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoba Narayan.

Ethics declarations

Conflict of Interest

The authors attest that we have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Nanoparticle-based Drug Delivery

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manivannan, S., Nagaraj, S. & Narayan, S. A Reflection on the Mechanism of the Role of Nanoparticles in Increasing the Efficacy of Anti-tumour Properties of Docetaxel. Curr Pathobiol Rep 9, 79–91 (2021). https://doi.org/10.1007/s40139-021-00223-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40139-021-00223-3

Keywords

Navigation