Skip to main content
Log in

Advances in Diffusion and Perfusion MRI for Quantitative Cancer Imaging

  • Update on Technological Innovations for Cancer Detection and Treatment (T Dickherber, Section Editor)
  • Published:
Current Pathobiology Reports

Abstract

Purpose of Review

This article is to review recent technical developments and their clinical applications in cancer imaging quantitative measurement of cellular and vascular properties of the tumors.

Recent Findings

Rapid development of fast magnetic resonance imaging (MRI) technologies over the last decade brought new opportunities in quantitative MRI methods to measure both cellular and vascular properties of tumors simultaneously.

Summary

Diffusion MRI (dMRI) and dynamic contrast-enhanced (DCE)-MRI have become widely used to assess the tissue structural and vascular properties, respectively. However, the ultimate potential of these advanced imaging modalities has not been fully exploited. The dependency of dMRI on the diffusion weighting gradient strength and diffusion time can be utilized to measure tumor perfusion, cellular structure, and cellular membrane permeability. Similarly, DCE-MRI can be used to measure vascular and cellular membrane permeability along with cellular compartment volume fractions. To facilitate the understanding of these potentially important methods for quantitative cancer imaging, we discuss the basic concepts and recent developments, as well as future directions for further development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada.[see comment]. J Natl Cancer Inst. 2000;92(3):205–16.

    Article  CAS  Google Scholar 

  2. Chenevert TL, McKeever PE, Ross BD. Monitoring early response of experimental brain tumors to therapy using diffusion magnetic resonance imaging. Clin Cancer Res. 1997;3(9):1457–66.

    CAS  PubMed  Google Scholar 

  3. Chenevert TL, Stegman LD, Taylor JM, Robertson PL, Greenberg HS, Rehemtulla A, et al. Diffusion magnetic resonance imaging: an early surrogate marker of therapeutic efficacy in brain tumors. J Natl Cancer Inst. 2000;92(24):2029–36. https://doi.org/10.1093/jnci/92.24.2029.

    Article  CAS  PubMed  Google Scholar 

  4. Kim S, Loevner L, Quon H, Sherman E, Weinstein G, Kilger A, et al. Diffusion-weighted magnetic resonance imaging for predicting and detecting early response to chemoradiation therapy of squamous cell carcinomas of the head and neck. Clin Cancer Res. 2009;15(3):986–94. https://doi.org/10.1158/1078-0432.CCR-08-1287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Choyke PL, Dwyer AJ, Knopp MV. Functional tumor imaging with dynamic contrast-enhanced magnetic resonance imaging. J Magn Reson Imaging. 2003;17(5):509–20. https://doi.org/10.1002/jmri.10304.

    Article  PubMed  Google Scholar 

  6. Provenzale JM, Mukundan S, Barboriak DP. Diffusion-weighted and perfusion MR imaging for brain tumor characterization and assessment of treatment response. Radiology. 2006;239(3):632–49. https://doi.org/10.1148/radiol.2393042031.

    Article  PubMed  Google Scholar 

  7. Tang L, Zhou XJ. Diffusion MRI of cancer: from low to high b-values. J Magn Reson Imaging. 2019;49(1):23–40. https://doi.org/10.1002/jmri.26293.

    Article  PubMed  Google Scholar 

  8. Niendorf T, Dijkhuizen RM, Norris DG, Campagne MV, Nicolay K. Biexponential diffusion attenuation in various states of brain tissue: implications for diffusion-weighted imaging. Magn Reson Med. 1996;36(6):847–57. https://doi.org/10.1002/mrm.1910360607.

    Article  CAS  PubMed  Google Scholar 

  9. Kiselev VG. Ch 10. The cumulant expansion: an overarching mathematical framework for understanding diffusion NMR. In: Diffusion MRI: theory, methods and applications, by Jones, DK Oxford University Press, New York. 2010.

    Chapter  Google Scholar 

  10. Jensen JH, Helpern JA, Ramani A, Lu HZ, Kaczynski K. Diffusional kurtosis imaging: the quantification of non-Gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med. 2005;53(6):1432–40. https://doi.org/10.1002/Mrm.20508.

    Article  PubMed  Google Scholar 

  11. Burcaw LM, Fieremans E, Novikov DS. Mesoscopic structure of neuronal tracts from time-dependent diffusion. NeuroImage. 2015;114:18–37. https://doi.org/10.1016/j.neuroimage.2015.03.061.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Padhani AR, Liu G, Mu-Koh D, Chenevert TL, Thoeny HC, Takahara T, et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia. 2009;11(2):102–25. https://doi.org/10.1593/neo.81328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen L, Liu M, Bao J, Xia Y, Zhang J, Zhang L, et al. The correlation between apparent diffusion coefficient and tumor cellularity in patients: a meta-analysis. PLoS One. 2013;8(11):e79008. https://doi.org/10.1371/journal.pone.0079008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gupta RK, Cloughesy TF, Sinha U, Garakian J, Lazareff J, Rubino G, et al. Relationships between choline magnetic resonance spectroscopy, apparent diffusion coefficient and quantitative histopathology in human glioma. J Neuro-Oncol. 2000;50(3):215–26. https://doi.org/10.1023/a:1006431120031.

    Article  CAS  Google Scholar 

  15. Matsuki M, Inada Y, Nakai G, Tatsugami F, Tanikake M, Narabayashi I, et al. Diffusion-weighed MR imaging of pancreatic carcinoma. Abdom Imaging. 2007;32(4):481–3. https://doi.org/10.1007/s00261-007-9192-6.

    Article  CAS  PubMed  Google Scholar 

  16. Muraoka N, Uematsu H, Kimura H, Imamura Y, Fujiwara Y, Murakami M, et al. Apparent diffusion coefficient in pancreatic cancer: characterization and histopathological correlations. J Magn Reson Imaging. 2008;27(6):1302–8. https://doi.org/10.1002/jmri.21340.

    Article  PubMed  Google Scholar 

  17. Wang Y, Chen ZE, Nikolaidis P, McCarthy RJ, Merrick L, Sternick LA, et al. Diffusion-weighted magnetic resonance imaging of pancreatic adenocarcinomas: association with histopathology and tumor grade. J Magn Reson Imaging. 2011;33(1):136–42. https://doi.org/10.1002/jmri.22414.

    Article  CAS  PubMed  Google Scholar 

  18. Subhawong TK, Durand DJ, Thawait GK, Jacobs MA, Fayad LM. Characterization of soft tissue masses: can quantitative diffusion weighted imaging reliably distinguish cysts from solid masses? Skelet Radiol. 2013;42(11):1583–92. https://doi.org/10.1007/s00256-013-1703-7.

    Article  Google Scholar 

  19. Partridge SC, Nissan N, Rahbar H, Kitsch AE, Sigmund EE. Diffusion-weighted breast MRI: clinical applications and emerging techniques. J Magn Reson Imaging. 2017;45(2):337–55. https://doi.org/10.1002/jmri.25479.

    Article  PubMed  Google Scholar 

  20. Galban CJ, Ma B, Malyarenko D, Pickles MD, Heist K, Henry NL, et al. Multi-site clinical evaluation of DW-MRI as a treatment response metric for breast cancer patients undergoing neoadjuvant chemotherapy. PLoS One. 2015;10(3):e0122151. https://doi.org/10.1371/journal.pone.0122151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jansen JF, Stambuk HE, Koutcher JA, Shukla-Dave A. Non-Gaussian analysis of diffusion-weighted MR imaging in head and neck squamous cell carcinoma: a feasibility study. AJNR Am J Neuroradiol. 2010;31(4):741–8. https://doi.org/10.3174/ajnr.A1919.

    Article  CAS  PubMed  Google Scholar 

  22. Rosenkrantz AB, Sigmund EE, Johnson G, Babb JS, Mussi TC, Melamed J, et al. Prostate cancer: feasibility and preliminary experience of a diffusional kurtosis model for detection and assessment of aggressiveness of peripheral zone cancer. Radiology. 2012;264(1):126–35. https://doi.org/10.1148/radiol.12112290.

    Article  PubMed  Google Scholar 

  23. Rosenkrantz AB, Sigmund EE, Winnick A, Niver BE, Spieler B, Morgan GR, et al. Assessment of hepatocellular carcinoma using apparent diffusion coefficient and diffusion kurtosis indices: preliminary experience in fresh liver explants. Magn Reson Imaging. 2012;30(10):1534–40. https://doi.org/10.1016/j.mri.2012.04.020.

    Article  PubMed  Google Scholar 

  24. Goshima S, Kanematsu M, Noda Y, Kondo H, Watanabe H, Bae KT. Diffusion kurtosis imaging to assess response to treatment in hypervascular hepatocellular carcinoma. AJR Am J Roentgenol. 2015;204(5):W543–9. https://doi.org/10.2214/AJR.14.13235.

    Article  PubMed  Google Scholar 

  25. Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161(2):401–7. https://doi.org/10.1148/radiology.161.2.3763909.

    Article  PubMed  Google Scholar 

  26. Manenti G, Di Roma M, Mancino S, Bartolucci DA, Palmieri G, Mastrangeli R, et al. Malignant renal neoplasms: correlation between ADC values and cellularity in diffusion weighted magnetic resonance imaging at 3 T. Radiol Med. 2008;113(2):199–213. https://doi.org/10.1007/s11547-008-0246-9.

    Article  CAS  PubMed  Google Scholar 

  27. Panagiotaki E, Walker-Samuel S, Siow B, Johnson SP, Rajkumar V, Pedley RB, et al. Noninvasive quantification of solid tumor microstructure using VERDICT MRI. Cancer Res. 2014;74(7):1902–12. https://doi.org/10.1158/0008-5472.CAN-13-2511 %JCancer Research.

    Article  CAS  PubMed  Google Scholar 

  28. Reynaud O. Time-dependent diffusion MRI in cancer: tissue modeling and applications. Front Phys. 2017;5(58). doi:https://doi.org/10.3389/fphy.2017.00058.

  29. Panagiotaki E, Chan RW, Dikaios N, Ahmed HU, O’Callaghan J, Freeman A, et al. Microstructural characterization of normal and malignant human prostate tissue with vascular, extracellular, and restricted diffusion for cytometry in tumours magnetic resonance imaging. Investig Radiol. 2015;50(4):218–27. https://doi.org/10.1097/RLI.0000000000000115.

    Article  CAS  Google Scholar 

  30. Jiang X, Li H, Xie J, Zhao P, Gore JC, Xu J. Quantification of cell size using temporal diffusion spectroscopy. Magn Reson Med. 2016;75(3):1076–85. https://doi.org/10.1002/mrm.25684.

    Article  PubMed  Google Scholar 

  31. Jiang X, Li H, Xie J, McKinley ET, Zhao P, Gore JC, et al. In vivo imaging of cancer cell size and cellularity using temporal diffusion spectroscopy. Magn Reson Med. 2017;78(1):156–64. https://doi.org/10.1002/mrm.26356.

    Article  CAS  PubMed  Google Scholar 

  32. Reynaud O, Winters KV, Hoang DM, Wadghiri YZ, Novikov DS, Kim SG. Pulsed and oscillating gradient MRI for assessment of cell size and extracellular space (POMACE) in mouse gliomas. NMR Biomed. 2016;29(10):1350–63. https://doi.org/10.1002/nbm.3577.

    Article  PubMed  Google Scholar 

  33. Mitra PP, Sen PN, Schwartz LM. Short-time behavior of the diffusion coefficient as a geometrical probe of porous media. Phys Rev B Condens Matter. 1993;47(14):8565–74. https://doi.org/10.1103/PhysRevB.47.8565.

    Article  CAS  PubMed  Google Scholar 

  34. Hope TR, White NS, Kuperman J, Chao Y, Yamin G, Bartch H, et al. Demonstration of non-Gaussian restricted diffusion in tumor cells using diffusion time-dependent diffusion-weighted magnetic resonance imaging contrast. Front Oncol. 2016;6(179):179. https://doi.org/10.3389/fonc.2016.00179.

    Article  PubMed  Google Scholar 

  35. Agre P, Bonhivers M, Borgnia MJ. The aquaporins, blueprints for cellular plumbing systems. J Biol Chem. 1998;273(24):14659–62. https://doi.org/10.1074/jbc.273.24.14659.

    Article  CAS  PubMed  Google Scholar 

  36. Springer CS Jr, Li X, Tudorica LA, Oh KY, Roy N, Chui SY, et al. Intratumor mapping of intracellular water lifetime: metabolic images of breast cancer? NMR Biomed. 2014;27(7):760–73. https://doi.org/10.1002/nbm.3111.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Y, Poirier-Quinot M, Springer CS Jr, Balschi JA. Active trans-plasma membrane water cycling in yeast is revealed by NMR. Biophys J. 2011;101(11):2833–42. https://doi.org/10.1016/j.bpj.2011.10.035.

    Article  CAS  PubMed  Google Scholar 

  38. Nath K, Paudyal R, Nelson DS, Pickup S, Zhou R, Leeper DB et al., editors. Acute changes in cellular-interstitial water exchange rate in DB-1 melanoma xenografts after lonidamine administration as a marker of tumor energetics and ion transport. Proc Intl Soc Magn Reson Med; 2014; Milan, Italy.

  39. Pfeuffer J, Flogel U, Dreher W, Leibfritz D. Restricted diffusion and exchange of intracellular water: theoretical modelling and diffusion time dependence of 1H NMR measurements on perfused glial cells. NMR Biomed. 1998;11(1):19–31. https://doi.org/10.1002/(SICI)1099-1492(199802)11:1<19::AID-NBM499>3.0.CO;2-O.

    Article  CAS  PubMed  Google Scholar 

  40. Meier C, Dreher W, Leibfritz D. Diffusion in compartmental systems. II. Diffusion-weighted measurements of rat brain tissue in vivo and postmortem at very large b-values. Magn Reson Med. 2003;50(3):510–4. https://doi.org/10.1002/mrm.10558.

    Article  PubMed  Google Scholar 

  41. Aslund I, Nowacka A, Nilsson M, Topgaard D. Filter-exchange PGSE NMR determination of cell membrane permeability. J Magn Reson. 2009;200(2):291–5. https://doi.org/10.1016/j.jmr.2009.07.015.

    Article  CAS  PubMed  Google Scholar 

  42. Lasic S, Oredsson S, Partridge SC, Saal LH, Topgaard D, Nilsson M, et al. Apparent exchange rate for breast cancer characterization. NMR Biomed. 2016;29(5):631–9. https://doi.org/10.1002/nbm.3504.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lampinen B, Szczepankiewicz F, van Westen D, Englund E. P CS, Latt J et al. Optimal experimental design for filter exchange imaging: apparent exchange rate measurements in the healthy brain and in intracranial tumors. Magn Reson Med. 2017;77(3):1104–14. https://doi.org/10.1002/mrm.26195.

    Article  PubMed  Google Scholar 

  44. Tian X, Li H, Jiang X, Xie J, Gore JC, Xu J. Evaluation and comparison of diffusion MR methods for measuring apparent transcytolemmal water exchange rate constant. J Magn Reson. 2017;275:29–37. https://doi.org/10.1016/j.jmr.2016.11.018.

    Article  CAS  PubMed  Google Scholar 

  45. Jensen JH, Helpern JA. MRI quantification of non-Gaussian water diffusion by kurtosis analysis. NMR Biomed. 2010;23(7):698–710. https://doi.org/10.1002/nbm.1518.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhang J, Lemberskiy G, Fieremans E, Novikov DS, Kim SG, editors. Measuring water exchange rate using time-dependent diffusion MRI. ISMRM MR in Cancer Workshop; 2018; Dublin, Ireland.

  47. Essig M, Shiroishi MS, Nguyen TB, Saake M, Provenzale JM, Enterline D, et al. Perfusion MRI: the five most frequently asked technical questions. AJR Am J Roentgenol. 2013;200(1):24–34. https://doi.org/10.2214/AJR.12.9543.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Jahng GH, Li KL, Ostergaard L, Calamante F. Perfusion magnetic resonance imaging: a comprehensive update on principles and techniques. Korean J Radiol. 2014;15(5):554–77. https://doi.org/10.3348/kjr.2014.15.5.554.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Turnbull LW. Dynamic contrast-enhanced MRI in the diagnosis and management of breast cancer. NMR Biomed. 2009;22(1):28–39. https://doi.org/10.1002/nbm.1273.

    Article  PubMed  Google Scholar 

  50. Zhang J, Liu H, Tong H, Wang S, Yang Y, Liu G, et al. Clinical applications of contrast-enhanced perfusion MRI techniques in gliomas: recent advances and current challenges. Contrast Media Mol I. 2017;2017:7064120. https://doi.org/10.1155/2017/7064120.

    Article  CAS  Google Scholar 

  51. Khalifa F, Soliman A, El-Baz A, Abou El-Ghar M, El-Diasty T, Gimel’farb G, et al. Models and methods for analyzing DCE-MRI: A review. Med Phys. 2014;41(12):124301. https://doi.org/10.1118/1.4898202.

    Article  PubMed  Google Scholar 

  52. Paldino MJ, Barboriak DP. Fundamentals of quantitative dynamic contrast-enhanced MR imaging. Magn Reson Imaging Clin N Am. 2009;17(2):277–89. https://doi.org/10.1016/j.mric.2009.01.007.

    Article  PubMed  Google Scholar 

  53. Tsao J, Kozerke S. MRI temporal acceleration techniques. J Magn Reson Imaging. 2012;36(3):543–60. https://doi.org/10.1002/jmri.23640.

    Article  PubMed  Google Scholar 

  54. Jones RA, Haraldseth O, Muller TB, Rinck PA, Oksendal AN. K-space substitution: a novel dynamic imaging technique. Magn Reson Med. 1993;29(6):830–4.

    Article  CAS  Google Scholar 

  55. Kim SG, Freed M, Leite APK, Zhang J, Seuss C, Moy L. Separation of benign and malignant breast lesions using dynamic contrast enhanced MRI in a biopsy cohort. J Magn Reson Imaging. 2017;45(5):1385–93. https://doi.org/10.1002/jmri.25501.

    Article  PubMed  Google Scholar 

  56. Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007;58(6):1182–95. https://doi.org/10.1002/mrm.21391.

    Article  PubMed  Google Scholar 

  57. Otazo R, Kim D, Axel L, Sodickson DK. Combination of compressed sensing and parallel imaging for highly accelerated first-pass cardiac perfusion MRI. Magn Reson Med. 2010;64(3):767–76. https://doi.org/10.1002/mrm.22463.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Adluru G, McGann C, Speier P, Kholmovski EG, Shaaban A, Dibella EV. Acquisition and reconstruction of undersampled radial data for myocardial perfusion magnetic resonance imaging. J Magn Reson Imaging. 2009;29(2):466–73. https://doi.org/10.1002/jmri.21585.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Feng L, Grimm R, Block KT, Chandarana H, Kim S, Xu J, et al. Golden-angle radial sparse parallel MRI: combination of compressed sensing, parallel imaging, and golden-angle radial sampling for fast and flexible dynamic volumetric MRI. Magn Reson Med. 2014;72(3):707–17. https://doi.org/10.1002/mrm.24980.

    Article  PubMed  Google Scholar 

  60. Winkelmann S, Schaeffter T, Koehler T, Eggers H, Doessel O. An optimal radial profile order based on the Golden Ratio for time-resolved MRI. IEEE Trans Med Imaging. 2007;26(1):68–76. https://doi.org/10.1109/TMI.2006.885337.

    Article  PubMed  Google Scholar 

  61. Turkbey B, Thomasson D, Pang Y, Bernardo M, Choyke PL. The role of dynamic contrast-enhanced MRI in cancer diagnosis and treatment. Diagn Interv Radiol. 2010;16(3):186–92. https://doi.org/10.4261/1305-3825.DIR.2537-08.1.

    Article  PubMed  Google Scholar 

  62. Zhang J, Feng L, Otazo R, Kim SG. Rapid dynamic contrast-enhanced MRI for small animals at 7T using 3D ultra-short echo time and golden-angle radial sparse parallel MRI. Magn Reson Med. 2019;81(1):140–52. https://doi.org/10.1002/mrm.27357.

    Article  PubMed  Google Scholar 

  63. Hammernik K, Klatzer T, Kobler E, Recht MP, Sodickson DK, Pock T, et al. Learning a variational network for reconstruction of accelerated MRI data. Magn Reson Med. 2018;79(6):3055–71. https://doi.org/10.1002/mrm.26977.

    Article  PubMed  Google Scholar 

  64. Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging. 1999;10(3):223–32. https://doi.org/10.1002/(SICI)1522-2586(199909)10:3<223::AID-JMRI2>3.0.CO;2-S.

    Article  CAS  PubMed  Google Scholar 

  65. Kim S, Quon H, Loevner LA, Rosen MA, Dougherty L, Kilger AM, et al. Transcytolemmal water exchange in pharmacokinetic analysis of dynamic contrast-enhanced MRI data in squamous cell carcinoma of the head and neck. J Magn Reson Imaging. 2007;26(6):1607–17. https://doi.org/10.1002/jmri.21207.

    Article  PubMed  Google Scholar 

  66. Brookes JA, Redpath TW, Gilbert FJ, Murray AD, Staff RT. Accuracy of T1 measurement in dynamic contrast-enhanced breast MRI using two- and three-dimensional variable flip angle fast low-angle shot. J Magn Reson Imaging. 1999;9(2):163–71.

    Article  CAS  Google Scholar 

  67. Scheffler K, Hennig J. T(1) quantification with inversion recovery TrueFISP. Magn Reson Med. 2001;45(4):720–3.

    Article  CAS  Google Scholar 

  68. Deoni SC, Rutt BK, Peters TM. Rapid combined T1 and T2 mapping using gradient recalled acquisition in the steady state. Magn Reson Med. 2003;49(3):515–26. https://doi.org/10.1002/mrm.10407.

    Article  PubMed  Google Scholar 

  69. Sung K, Daniel BL, Hargreaves BA. Transmit B1+ field inhomogeneity and T1 estimation errors in breast DCE-MRI at 3 tesla. J Magn Reson Imaging. 2013;38(2):454–9. https://doi.org/10.1002/jmri.23996.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Dowell NG, Tofts PS. Fast, accurate, and precise mapping of the RF field in vivo using the 180 degrees signal null. Magn Reson Med. 2007;58(3):622–30. https://doi.org/10.1002/Mrm.21368.

    Article  PubMed  Google Scholar 

  71. Wang J, Qiu M, Kim H, Constable RT. T1 measurements incorporating flip angle calibration and correction in vivo. J Magn Reson. 2006;182(2):283–92. https://doi.org/10.1016/j.jmr.2006.07.005.

    Article  CAS  PubMed  Google Scholar 

  72. Morrell GR. A phase-sensitive method of flip angle mapping. Magn Reson Med. 2008;60(4):889–94. https://doi.org/10.1002/mrm.21729.

    Article  PubMed  Google Scholar 

  73. Parker GJ, Barker GJ, Tofts PS. Accurate multislice gradient echo T(1) measurement in the presence of non-ideal RF pulse shape and RF field nonuniformity. Magn Reson Med. 2001;45(5):838–45.

    Article  CAS  Google Scholar 

  74. Balezeau F, Eliat PA, Cayamo AB, Saint-Jalmes H. Mapping of low flip angles in magnetic resonance. Phys Med Biol. 2011;56(20):6635–47. https://doi.org/10.1088/0031-9155/56/20/008.

    Article  PubMed  Google Scholar 

  75. Buonincontri G, Sawiak SJ. MR fingerprinting with simultaneous B1 estimation. Magn Reson Med. 2016;76(4):1127–35. https://doi.org/10.1002/mrm.26009.

    Article  PubMed  Google Scholar 

  76. Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, et al. Estimating kinetic parameters from dynamic contrast-enhanced t1-weighted MRI of a diffusable tracer: Standardized quantities and symbols. J Magn Reson Imaging. 1999;10(3):223–32. https://doi.org/10.1002/(SICI)1522-2586(199909)10:3<223::AID-JMRI2>3.0.CO;2-S.

    Article  CAS  PubMed  Google Scholar 

  77. Bergamino M, Bonzano L, Levrero F, Mancardi GL, Roccatagliata L. A review of technical aspects of T1-weighted dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in human brain tumors. Phys Medica. 2014;30(6):635–43. https://doi.org/10.1016/j.ejmp.2014.04.005.

    Article  CAS  Google Scholar 

  78. Zhu XP, Li KL, Kamaly-Asl ID, Checkley DR, Tessier JJ, Waterton JC, et al. Quantification of endothelial permeability, leakage space, and blood volume in brain tumors using combined T1 and T2* contrast-enhanced dynamic MR imaging. J Magn Reson Imaging. 2000;11(6):575–85.

    Article  CAS  Google Scholar 

  79. Hunter GJ, Hamberg LM, Choi N, Jain RK, McCloud T, Fischman AJ. Dynamic T1-weighted magnetic resonance imaging and positron emission tomography in patients with lung cancer: correlating vascular physiology with glucose metabolism. Clin Cancer Res. 1998;4(4):949–55.

    CAS  PubMed  Google Scholar 

  80. Naish JH, Kershaw LE, Buckley DL, Jackson A, Waterton JC, Parker GJ. Modeling of contrast agent kinetics in the lung using T1-weighted dynamic contrast-enhanced MRI. Magn Reson Med. 2009;61(6):1507–14. https://doi.org/10.1002/mrm.21814.

    Article  PubMed  Google Scholar 

  81. Tofts PS, Berkowitz B, Schnall MD. Quantitative analysis of dynamic Gd-DTPA enhancement in breast tumors using a permeability model. Magn Reson Med. 1995;33(4):564–8.

    Article  CAS  Google Scholar 

  82. Jackson AS, Reinsberg SA, Sohaib SA, Charles-Edwards EM, Jhavar S, Christmas TJ, et al. Dynamic contrast-enhanced MRI for prostate cancer localization. Br J Radiol. 2009;82(974):148–56. https://doi.org/10.1259/bjr/89518905.

    Article  CAS  PubMed  Google Scholar 

  83. Yang X, Liang J, Heverhagen JT, Jia G, Schmalbrock P, Sammet S, et al. Improving the pharmacokinetic parameter measurement in dynamic contrast-enhanced MRI by use of the arterial input function: theory and clinical application. Magn Reson Med. 2008;59(6):1448–56. https://doi.org/10.1002/mrm.21608.

    Article  PubMed  Google Scholar 

  84. George ML, Dzik-Jurasz AS, Padhani AR, Brown G, Tait DM, Eccles SA, et al. Non-invasive methods of assessing angiogenesis and their value in predicting response to treatment in colorectal cancer. Br J Surg. 2001;88(12):1628–36. https://doi.org/10.1046/j.0007-1323.2001.01947.x.

    Article  CAS  PubMed  Google Scholar 

  85. Kim S, Decarlo L, Cho GY, Jensen JH, Sodickson DK, Moy L, et al. Interstitial fluid pressure correlates with intravoxel incoherent motion imaging metrics in a mouse mammary carcinoma model. NMR Biomed. 2012;25(5):787–94. https://doi.org/10.1002/nbm.1793.

    Article  PubMed  Google Scholar 

  86. Sourbron SP, Buckley DL. Tracer kinetic modelling in MRI: estimating perfusion and capillary permeability. Phys Med Biol. 2012;57(2):R1–33. https://doi.org/10.1088/0031-9155/57/2/r1.

    Article  CAS  PubMed  Google Scholar 

  87. St Lawrence KS, Lee TY. An adiabatic approximation to the tissue homogeneity model for water exchange in the brain: I. Theoretical derivation. J Cereb Blood Flow Metab. 1998;18(12):1365–77. https://doi.org/10.1097/00004647-199,812,000-00011.

    Article  CAS  PubMed  Google Scholar 

  88. Huang W, Chen Y, Fedorov A, Li X, Jajamovich GH, Malyarenko DI, et al. The impact of arterial input function determination variations on prostate dynamic contrast-enhanced magnetic resonance imaging pharmacokinetic modeling: a multicenter data analysis challenge. Tomography. 2016;2(1):56–66. https://doi.org/10.18383/j.tom.2015.00184.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Zhang J, Winters K, Reynaud O, Kim SG. Simultaneous measurement of T1/B1 and pharmacokinetic model parameters using active contrast encoding (ACE)-MRI. NMR Biomed. 2017;30(9):e3737. https://doi.org/10.1002/nbm.3737.

    Article  CAS  Google Scholar 

  90. Yarnykh VL. Optimal radiofrequency and gradient spoiling for improved accuracy of T1 and B1 measurements using fast steady-state techniques. Magn Reson Med. 2010;63(6):1610–26. https://doi.org/10.1002/mrm.22394.

    Article  PubMed  Google Scholar 

  91. Landis CS, Li X, Telang FW, Coderre JA, Micca PL, Rooney WD, et al. Determination of the MRI contrast agent concentration time course in vivo following bolus injection: effect of equilibrium transcytolemmal water exchange. Magn Reson Med. 2000;44(4):563–74.

    Article  CAS  Google Scholar 

  92. Kim S, Loevner LA, Quon H, Kilger A, Sherman E, Weinstein G, et al. Prediction of response to chemoradiation therapy in squamous cell carcinomas of the head and neck using dynamic contrast-enhanced MR imaging. AJNR Am J Neuroradiol. 2010;31(2):262–8. https://doi.org/10.3174/ajnr.A1817.

    Article  CAS  PubMed  Google Scholar 

  93. Huang W, Li X, Morris EA, Tudorica LA, Seshan VE, Rooney WD, et al. The magnetic resonance shutter speed discriminates vascular properties of malignant and benign breast tumors in vivo. Proc Natl Acad Sci U S A. 2008;105(46):17943–8. https://doi.org/10.1073/pnas.0711226105.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Li X, Huang W, Morris EA, Tudorica LA, Seshan VE, Rooney WD, et al. Dynamic NMR effects in breast cancer dynamic-contrast-enhanced MRI. Proc Natl Acad Sci U S A. 2008;105(46):17937–42. https://doi.org/10.1073/pnas.0804224105.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Zhang J, Kim S. Uncertainty in MR tracer kinetic parameters and water exchange rates estimated from T1-weighted dynamic contrast enhanced MRI. Magn Reson Med. 2014;72(2):534–45. https://doi.org/10.1002/mrm.24927.

    Article  PubMed  Google Scholar 

  96. Buckley DL. Shutter-speed dynamic contrast-enhanced MRI: Is it fit for purpose? Magn Reson Med. 2019;81(2):976–88. https://doi.org/10.1002/mrm.27456.

    Article  PubMed  Google Scholar 

  97. Spencer RG, Fishbein KW. Measurement of spin-lattice relaxation times and concentrations in systems with chemical exchange using the one-pulse sequence: breakdown of the Ernst model for partial saturation in nuclear magnetic resonance spectroscopy. J Magn Reson. 2000;142(1):120–35. https://doi.org/10.1006/jmre.1999.1925 S1090-7807(99)91925–0.

    Article  CAS  PubMed  Google Scholar 

  98. Zhang J, Freed M, Rodriguez J, Turnbull D, Kim S, editors. Improved accuracy and precision in estimation of intracellular water lifetime. 21st Annual Meeting of ISMRM; 2013; Salt Lake City, Utah, USA.

  99. Nilsson M, Englund E, Szczepankiewicz F, van Westen D, Sundgren PC. Imaging brain tumour microstructure. NeuroImage. 2018;182:232–50. https://doi.org/10.1016/j.neuroimage.2018.04.075.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported in part by grants R01CA160620, R01CA219964, UG3CA228699, and P41EB017183 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehran Baboli.

Ethics declarations

Conflict of Interest

Mehran Baboli, Jin Zhang, Sungheon Gene Kim declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Update on Technological Innovations for Cancer Detection and Treatment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baboli, M., Zhang, J. & Kim, S.G. Advances in Diffusion and Perfusion MRI for Quantitative Cancer Imaging. Curr Pathobiol Rep 7, 129–141 (2019). https://doi.org/10.1007/s40139-019-00204-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40139-019-00204-7

Keywords

Navigation